OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23633–23645

Quantum-dot-induced transparency in a nanoscale plasmonic resonator

Xiaohua Wu, Stephen K. Gray, and Matthew Pelton  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23633-23645 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the near-field optical coupling between a single semiconductor nanocrystal (quantum dot) and a nanometer-scale plasmonic metal resonator using rigorous electrodynamic simulations. Our calculations show that the quantum dot produces a dip in both the extinction and scattering spectra of the surface-plasmon resonator, with a particularly strong change for the scattering spectrum. A phenomenological coupled-oscillator model is used to fit the calculation results and provide physical insight, revealing the roles of Fano interference and hybridization. The results indicate that it is possible to achieve nearly complete transparency as well as enter the strong-coupling regime for a single quantum dot in the near field of a metal nanostructure.

© 2010 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: August 10, 2010
Revised Manuscript: October 18, 2010
Manuscript Accepted: October 18, 2010
Published: October 26, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Xiaohua Wu, Stephen K. Gray, and Matthew Pelton, "Quantum-dot-induced transparency in a nanoscale plasmonic resonator," Opt. Express 18, 23633-23645 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 135-169 (2008).
  2. X. Wu, Y. Sun, and M. Pelton, "Recombination rates for single colloidal quantum dots near a smooth metal film," Phys. Chem. Chem. Phys. 11, 5867-5870 (2009). [CrossRef] [PubMed]
  3. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004). [CrossRef] [PubMed]
  4. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006). [CrossRef]
  5. W. Zhang, A. O. Govorov, and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect," Phys. Rev. Lett. 97, 146804 (2006). [CrossRef] [PubMed]
  6. R. D. Artuso, and G. W. Bryant, "Optical response of strongly coupled quantum dot - metal nanoparticle systems: Double peaked Fano structure and bistability," Nano Lett. 8, 2106-2111 (2008). [CrossRef] [PubMed]
  7. J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006). [CrossRef]
  8. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004). [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  10. E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  11. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007). [CrossRef] [PubMed]
  12. M. Fleishhauer, A. Imamoglu, and J. P. Narangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  13. E. Waks, and J. Vuckovic, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006). [CrossRef] [PubMed]
  14. V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010). [CrossRef]
  15. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009). [CrossRef] [PubMed]
  16. P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, "Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals," Phys. Rev. B 67, 201307 (2003).
  17. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996). [CrossRef] [PubMed]
  18. A. Trugler, and U. Hohenester, "Strong coupling between a metallic nanoparticle and a single molecule," Phys. Rev. B 77, 115403 (2008). [CrossRef]
  19. C. de M. Donega, and R. Koole, "Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots," J. Phys. Chem. C 113, 6511-6520 (2009). [CrossRef]
  20. P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, "Imaging a single quantum dot when it is dark," Nano Lett. 9, 926-929 (2009). [CrossRef]
  21. S. A. Empedocles, and M. G. Bawendi, "Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots," J. Phys. Chem. B 103, 1826-1830 (1999). [CrossRef]
  22. S. H. Park, M. P. Casy, and J. P. Falk, "Nonlinear optical properties of CdSe quantum dots," J. Appl. Phys. 73, 8041-8045 (1993). [CrossRef]
  23. M. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007). [CrossRef]
  24. P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  25. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed. (Artech House, Boston, 2000).
  26. J. M. Montgomery, T.-W. Lee, and S. K. Gray, "Theory and modeling of light interactions with metallic nanostructures," J. Phys. Condens. Matter 20, 323201 (2008). [CrossRef]
  27. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002). [CrossRef]
  28. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009). [CrossRef] [PubMed]
  29. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd Ed., (Wiley, New York, 1983).
  30. A. Nitzan, and L. E. Brus, "Theoretical model for enhanced photochemistry on rough surfaces," J. Chem. Phys. 75, 2205-2214 (1981). [CrossRef]
  31. J. Gersten, and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139-1152 (1981). [CrossRef]
  32. P. Nagpal, N. C. Lindquist, S. Oh, and D. J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science 325, 594-597 (2009). [CrossRef] [PubMed]
  33. L. E. Ocola, "Nanoscale geometry assisted proximity correction for electron beam direct write lithography," J. Vac. Sci. Technol. B 27, 2569-2571 (2009). [CrossRef]
  34. Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited