OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23646–23656

Monte Carlo simulation of the molecular distribution and optical properties of a nematic liquid crystal system with periodic surface gratings

C. Berlic and V. Barna  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23646-23656 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report Monte Carlo simulations based on the Lebwohl-Lasher model for characterizing the molecular director configuration in a nematic liquid crystal cell presenting periodical boundary anchoring conditions. We demonstrate the molecular orientation and spatial behaviour, while profiling the local order parameter distribution for the proposed confining geometry, as well as the boundary and interface interaction fields propagation through the namatic bulk for various temperatures in the proximity of the nematic-isotropic transition. Simulations were also performed concerning with the light passing through the planar and homeotropic periodical regions of the nematic cell and a mapping of the transmitted intensity was obtained for several ambient temperatures. The boundary constraints and the selected periodical geometry of the simulated system play an extremely important role for the demonstrated optical and orientational properties of the liquid crystalline material.

© 2010 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3710) Materials : Liquid crystals
(160.4760) Materials : Optical properties
(230.3720) Optical devices : Liquid-crystal devices
(260.1440) Physical optics : Birefringence
(350.2770) Other areas of optics : Gratings

ToC Category:
Optical Devices

Original Manuscript: July 13, 2010
Revised Manuscript: September 28, 2010
Manuscript Accepted: October 13, 2010
Published: October 27, 2010

Berlic C. and Barna V., "Monte Carlo simulation of the molecular distribution and optical properties of a nematic liquid crystal system with periodic surface gratings," Opt. Express 18, 23646-23656 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1995).
  2. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, 1993).
  3. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (Wiley, 2009).
  4. A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003). [CrossRef]
  5. N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004). [CrossRef]
  6. D. W. Berremann, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972). [CrossRef]
  7. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992). [CrossRef]
  8. F. C. Frank, “On the Theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958). [CrossRef]
  9. M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989)
  10. D. Frenkel, and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2001).
  11. M. E. J. Newman, and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999)
  12. P. Pasini, C. Zannoni, and S. Zumer, Computer Simulations of Liquid Crystals and Polymers (Springer, 2005).
  13. D. P. Landau, and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2000).
  14. E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).
  15. E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995). [CrossRef]
  16. C. Chiccoli, P. Pasini, S. Guzzeti, and C. Zannoni, “A Monte Carlo Simulation of In-Plane Switching Liquid Crystal Display,” Int. J. Mod. Phys. C 9(3), 409–419 (1998). [CrossRef]
  17. C. Chiccoli, S. Guzzeti, P. Pasini, and C. Zannoni, “Computer Simulations of Nematic Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 360(1), 119–129 (2001). [CrossRef]
  18. C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003). [CrossRef] [PubMed]
  19. A. M. Smondyrev and R. A. Pelcovits, “Nematic Structures in Cylindrical Cavities,” Liq. Cryst. 26(2), 235–240 (1999). [CrossRef]
  20. E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994). [CrossRef] [PubMed]
  21. C. Berlic, E. Barna, and C. Ciucu, “Monte Carlo Simulation of a Nematic Liquid Crystal Cell with a Hemispheric Defect on One Electrode,” J. Optoelectron. Adv. Mater. 9, 3854–3859 (2007).
  22. C. Berlic and V. Barna, “Nematic Director Distribution of a Liquid Crystalline System Presenting a Cylindrical Defect,” Journal J. Optoelectron. Adv. Mater. 12, 1427–1432 (2010).
  23. P. Pasini, and C. Zannoni, eds., Advances in the Computer Simulations of Liquid Crystals (Kluver, Dordrecht, 2000).
  24. D. W. Berreman, “Liquid-Crystal Twist Cell Dynamics with Backflow,” J. Appl. Phys. 46(9), 3746–3751 (1975). [CrossRef]
  25. M. Schadt and W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971). [CrossRef]
  26. M. Schadt, H. Seiberle, and A. Schuster, “Optical Patterning of Multi-Domain Liquid-Crystal Displays with Wide Viewing Angles,” Nature 381(6579), 212–215 (1996). [CrossRef]
  27. P. A. Lebwohl and G. Lasher, “Nematic Liquid Crystal Order – A Monte Carlo Calculation,” Phys. Rev. A 6(1), 426–429 (1972). [CrossRef]
  28. J. A. Schellman, “Polarization Modulation Spectroscopy”, in Polarized Spectroscopy of Ordered Systems, B. Samori’ and E.W. Thulstrup, eds. (Kluwer, Dordrecht, 1988).
  29. G. W. Gray, K. J. Harrison, and J. A. Nash, “New Family of Nematic Liquid Crystals for Displays,” Electron. Lett. 9(6), 130–131 (1973). [CrossRef]
  30. T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley & Sons, Inc., Hoboken, New Jersey, 2007), Chap. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited