OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 23746–23755

Contrast improvement by selecting ballistic-photons using polarization gating

Miloš Šormaz and Patrick Jenny  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 23746-23755 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper a new approach to improve contrast in optical subsurface imaging is presented. The method is based on time-resolved reflectance and selection of ballistic photons using polarization gating. Numerical studies with a statistical Monte Carlo method also reveal that weakly scattered diffuse photons can be eliminated by employing a small aperture and that the contrast improvement strongly depends on the single-scattering phase function. A possible experimental setup is discussed in the conclusions.

© 2010 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(120.5700) Instrumentation, measurement, and metrology : Reflection
(260.5430) Physical optics : Polarization
(290.4210) Scattering : Multiple scattering
(320.7100) Ultrafast optics : Ultrafast measurements
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Imaging Systems

Original Manuscript: August 20, 2010
Revised Manuscript: September 16, 2010
Manuscript Accepted: October 24, 2010
Published: October 27, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Miloš Šormaz and Patrick Jenny, "Contrast improvement by selecting ballistic-photons using polarization gating," Opt. Express 18, 23746-23755 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005). [CrossRef] [PubMed]
  2. S. G. Demos, and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997). [CrossRef] [PubMed]
  3. S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt. Express 7, 23-28 (2000). [CrossRef] [PubMed]
  4. X. Ni, and R. R. Alfano, "Time-resolved backscattering of circularly and linearly polarized light in a turbid medium," Opt. Lett. 29, 2773-2775 (2004). [CrossRef] [PubMed]
  5. S. A. Kartazayeva, X. Ni, and R. R. Alfano, "Backscattering target detection in a turbid medium by use of circularly and linearly polarized light," Opt. Lett. 30, 1168-1170 (2005). [CrossRef] [PubMed]
  6. R. Nothdurft, and G. Yao, "Expression of target optical properties in subsurface polarization-gated imaging," Opt. Express 13, 4185-4195 (2005). [CrossRef] [PubMed]
  7. Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13, 601-611 (2005). [CrossRef] [PubMed]
  8. A. D. Kim, and M. Moscoso, "Backscattering of circularly polarized pulses," Opt. Lett. 27, 1589-1591 (2002). [CrossRef]
  9. W. Cai, X. Ni, S. K. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev. E 74, 056605 (2006). [CrossRef]
  10. A. D. Kim, and M. Moscoso, "Backscattering of beams by forward-peaked scattering media," Opt. Lett. 29, 74-76 (2004). [CrossRef] [PubMed]
  11. K. G. Phillips, M. Xu, S. K. Gayen, and R. R. Alfano, "Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media," Opt. Express 13, 7954-7969 (2005). [CrossRef] [PubMed]
  12. P. Jenny, S. Mourad, T. Stamm, M. Vöge, and K. Simon, "Computing light statistics in heterogeneous media based on a mass weighted probability density function method," J. Opt. Soc. Am. A 24, 2206-2219 (2007). [CrossRef]
  13. M. Šormaz, T. Stamm, S. Mourad, and P. Jenny, "Stochastic modeling of light scattering with fluorescence using a Monte Carlo-based multiscale approach," J. Opt. Soc. Am. A 26, 1403-1413 (2009). [CrossRef]
  14. M. Šormaz, T. Stamm, and P. Jenny, "Stochastic modeling of polarized light scattering using a Monte Carlo-based stencil method," J. Opt. Soc. Am. A 27, 1100-1110 (2010). [CrossRef]
  15. M. Šormaz, T. Stamm, and P. Jenny, "Influence of linear birefringence in the computation of scattering phase functions," J. Biomed. Opt. 15, 055010 (2010). [CrossRef] [PubMed]
  16. M. Xu, "Electric field Monte Carlo simulation of polarized light propagating in turbid media," Opt. Express 12, 6530-6539 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited