OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24070–24084

Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system

H. Song, R. Fraanje, G. Schitter, H. Kroese, G. Vdovin, and M. Verhaegen  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 24070-24084 (2010)
http://dx.doi.org/10.1364/OE.18.024070


View Full Text Article

Enhanced HTML    Acrobat PDF (934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In many scientific and medical applications, such as laser systems and microscopes, wavefront-sensor-less (WFSless) adaptive optics (AO) systems are used to improve the laser beam quality or the image resolution by correcting the wavefront aberration in the optical path. The lack of direct wavefront measurement in WFSless AO systems imposes a challenge to achieve efficient aberration correction. This paper presents an aberration correction approach for WFSlss AO systems based on the model of the WFSless AO system and a small number of intensity measurements, where the model is identified from the input-output data of the WFSless AO system by black-box identification. This approach is validated in an experimental setup with 20 static aberrations having Kolmogorov spatial distributions. By correcting N = 9 Zernike modes (N is the number of aberration modes), an intensity improvement from 49% of the maximum value to 89% has been achieved in average based on N + 5 = 14 intensity measurements. With the worst initial intensity, an improvement from 17% of the maximum value to 86% has been achieved based on N + 4 = 13 intensity measurements.

© 2010 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(220.1000) Optical design and fabrication : Aberration compensation
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Active and Adaptive Optics

History
Original Manuscript: July 15, 2010
Manuscript Accepted: August 23, 2010
Published: November 3, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
H. Song, R. Fraanje, G. Schitter, H. Kroese, G. Vdovin, and M. Verhaegen, "Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system," Opt. Express 18, 24070-24084 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-24070


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, "Adaptive imaging system for phase-distorted extended source and multiple-distance objects," Appl. Opt. 36(15), 3319-3328 (1997). [CrossRef] [PubMed]
  2. G. Vdovin, "Optimization-based operation of micromachined deformable mirrors," Proc. SPIE 3353, 902-909 (1998). [CrossRef]
  3. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, "Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration," J. Opt. Soc. Am. A 17(8), 1440-1453 (2000). [CrossRef]
  4. W. Lubeigt, G. Valentine, J. M. Girkin, E. Bente, and D. Burns, "Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror," Opt. Express 10(13), 550-555 (2002). [PubMed]
  5. U. Wittrock, I. Buske, and H. M. Heuck, "Adaptive aberration control in laser amplifiers and laser resonators," Proc. SPIE 4969, 122-136 (2003). [CrossRef]
  6. M. de Boer, K. Hinnen, M. Verhaegen, R. Fraanje, G. Vdovin, and N. Doelman, "Control of a thermal deformable mirror: correction of a static disturbance with limited sensor information," in Proceedings of the 4th International Workshop on Adaptive Optics for Industry and Medicine, pages 61-71, Münster, Germany, 2003.
  7. R. El-Agmy, H. Bulte, A. H. Greenaway, and D. Reid, "Adaptive beam profile control using a simulated annealing algorithm," Opt. Express 13(16), 6085-6091 (2005). [CrossRef] [PubMed]
  8. A. A. Aleksandrov, A. V. Kudryashov, A. L. Rukosuev, T. Yu. Cherezova, and Yu. V. Sheldakova, "An adaptive optical system for controlling laser radiation," J. Opt. Technol. 74(8), 550-554 (2007). [CrossRef]
  9. P. Yang, Y. Liu, W. Yang, M. W. Ao, S. J. Hu, B. Xu, and W. H. Jiang, "Adaptive mode optimization of a continuous-wave solid-state laser using an intracavity piezoelectric deformable mirror," Opt. Commun. 278(2), 377-381 (2007). [CrossRef]
  10. W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, "Search-based active optic systems for aberration correction in time-independent applications," Appl. Opt. 49(3), 307-314 (2010). [CrossRef] [PubMed]
  11. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, "Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy," Opt. Lett. 25(1), 52-54 (2000). [CrossRef]
  12. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, "Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror," J. Microsc. 206(1), 65-71 (2002). [CrossRef] [PubMed]
  13. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Adaptive aberration correction in a confocal microscope," Proc. Natl. Acad. Sci. U.S.A. 99(9), 5788-5792 (2002). [CrossRef]
  14. P. Marsh, D. Burns, and J. M. Girkin, "Practical implementation of adaptive optics in multiphoton microscopy," Opt. Express 11(10), 1123-1130 (2003). [CrossRef] [PubMed]
  15. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, "Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy," Microsc. Res. Tech. 67(1), 36-44 (2005). [CrossRef] [PubMed]
  16. S. P. Poland, A. J. Wright, and J. M. Girkin, "Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy," Appl. Opt. 47(6), 731-736 (2008). [CrossRef] [PubMed]
  17. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, "Adaptive optics for structured illumination microscopy," Opt. Express 16(13), 9290-9305 (2008). [CrossRef] [PubMed]
  18. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, "Image-based adaptive optics for two-photon microscopy," Opt. Lett. 34(16), 2495-2497 (2009). [CrossRef] [PubMed]
  19. F. Roddier, Adaptive Optics in Astronomy, (Cambridge University Press, Cambridge, UK, 1999). [CrossRef]
  20. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, (Oxford University Press, New York, USA, 1998).
  21. M. J. Booth, "Wave front sensor-less adaptive optics: a model-based approach using sphere packings," Opt. Express 14(4), 1339-1352 (2006). [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, USA, 1996).
  23. H. Song, G. Vdovin, R. Fraanje, G. Schitter, and M. Verhaegen, "Extracting hysteresis from nonlinear measurement of wavefront-sensorless adaptive optics system," Opt. Lett. 34(1), 61-63 (2009). [CrossRef]
  24. M. Verhaegen, and V. Verdult, Filtering and System Identification: A Least Squares Approach, (Cambridge University Press, Cambridge, USA, 2007). [CrossRef]
  25. J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P. Glorennec, H. Hjalmarsson, and A. Juditsky, "Nonlinear black-box modeling in system identification: a unified overview," Automatica 31(12), 1691-1724 (1995). [CrossRef]
  26. M. Schwertner, M. J. Booth, and T. Wilson, "Characterizing specimen induced aberrations for high NA adaptive optical microscopy," Opt. Express 12(26), 6540-6552 (2004). [CrossRef] [PubMed]
  27. G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, "Correction of low order aberrations using continuous deformable mirrors," Opt. Express 16(5), 2859-2866 (2008). [CrossRef] [PubMed]
  28. S. Y. Kung, Digital Neural Networks, (Prentice-Hall, Upper Saddle River, NJ, USA, 1993).
  29. S. Haykin, Neural Networks: a Comprehensive Foundation, (Macmillan, New York, USA, 1994).
  30. M. Brown, and C. Harris, Neurofuzzy Adaptive Modeling and Control, (Prentice-Hall, New York, USA, 1994).
  31. H. Demuth, M. Beale, and M. Hagan, Neural Network Toolbox 5 User’s Guide, (The MathWorks, Inc., 2007). [PubMed]
  32. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).
  33. W. H. Press, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C; the Art of Scientific Computing, 2nd ed. (Cambridge University Press, New York, USA, 1992).
  34. M. Loktev, D. Monteiroa, and G. Vdovin, "Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions," Opt. Commun. 192, 91-99 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited