OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24163–24177

A photonic-crystal optical antenna for extremely large local-field enhancement

Hyun-Joo Chang, Se-Heon Kim, Yong-Hee Lee, Emil P. Kartalov, and Axel Scherer  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 24163-24177 (2010)
http://dx.doi.org/10.1364/OE.18.024163


View Full Text Article

Enhanced HTML    Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q ~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement ~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators.

© 2010 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.5750) Optical devices : Resonators
(160.5293) Materials : Photonic bandgap materials
(230.5298) Optical devices : Photonic crystals
(290.5825) Scattering : Scattering theory

ToC Category:
Photonic Crystals

History
Original Manuscript: September 13, 2010
Revised Manuscript: October 16, 2010
Manuscript Accepted: October 21, 2010
Published: November 3, 2010

Citation
Hyun-Joo Chang, Se-Heon Kim, Yong-Hee Lee, Emil P. Kartalov, and Axel Scherer, "A photonic-crystal optical antenna for extremely large local-field enhancement," Opt. Express 18, 24163-24177 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-24163


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003). [CrossRef]
  2. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  3. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  4. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  5. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010). [CrossRef]
  6. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005). [CrossRef] [PubMed]
  7. K. Kneipp and ., “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]
  8. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003). [CrossRef] [PubMed]
  9. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008). [CrossRef] [PubMed]
  10. E. Prodan and P. Nordlander, “Plasmon hybridization in spherical nanoparticles,” J. Chem. Phys. 120(11), 5444–5454 (2004). [CrossRef] [PubMed]
  11. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999). [CrossRef]
  12. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  13. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003). [CrossRef]
  14. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature photon. 1, 449–458 (2007).
  15. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1, 49–52 (2007). [CrossRef]
  16. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-small photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006). [CrossRef]
  17. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003). [CrossRef]
  18. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007). [CrossRef]
  19. C. A. Balanis, Antenna Theory: Analyses and Design (John Wiley and Sons, Inc., Hoboken, New Jersey, 2005).
  20. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  21. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27, 241–250 (1998). [CrossRef]
  22. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]
  23. M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003). [CrossRef]
  24. A. Taflove, and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (2nd ed) (Artech House, 2000).
  25. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003). [CrossRef] [PubMed]
  26. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006). [CrossRef] [PubMed]
  27. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15(12), 7303–7318 (2007). [CrossRef] [PubMed]
  28. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007). [CrossRef] [PubMed]
  29. S. G. Johnson, http://ab-initio.mit.edu/wiki/index.php/Harminv

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited