OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24213–24220

Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect

Jin Tae Kim, Suntak Park, Jung Jin Ju, Sangjun Lee, and Sangin Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 24213-24220 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The bending loss characteristics of the hybrid plasmonic waveguide are investigated theoretically and experimentally. Simulation results showed that the guided mode is confined mainly into outer high index slab as the bending radius decreases. Thus, the radiation loss due to bending is greatly suppressed. We fabricate flexible hybrid plasmonic waveguide consisted of 5 nm-thick Au stripe and flexible multiple polymer cladding layers. The measured bending loss is lower than 1 dB/180° at a wavelength of 1310 nm for the bending radii down to 2 mm.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: August 18, 2010
Revised Manuscript: October 7, 2010
Manuscript Accepted: October 18, 2010
Published: November 4, 2010

Jin Tae Kim, Suntak Park, Jung Jin Ju, Sangjun Lee, and Sangin Kim, "Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect," Opt. Express 18, 24213-24220 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  5. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004). [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005). [CrossRef] [PubMed]
  7. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005). [CrossRef] [PubMed]
  8. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  9. S. Jetté-Charbonneau and P. Berini, “External cavity laser using a long-range surface plasmon grating as a distributed Bragg reflector,” Appl. Phys. Lett. 91(18), 181114 (2007). [CrossRef]
  10. S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009). [CrossRef]
  11. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008). [CrossRef] [PubMed]
  12. J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009). [CrossRef]
  13. W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M. H. Lee, and W. J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006). [CrossRef] [PubMed]
  14. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006). [CrossRef] [PubMed]
  15. S. Lee, S. Kim, and H. Lim, “Improved bending loss characteristics of asymmetric surface plasmonic waveguides for flexible optical wiring,” Opt. Express 17(22), 19435–19443 (2009). [CrossRef] [PubMed]
  16. J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009). [CrossRef] [PubMed]
  17. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010). [CrossRef] [PubMed]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  19. G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994). [CrossRef]
  20. R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995). [CrossRef]
  21. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007). [CrossRef]
  22. J. T. Kim, S. Park, and S. K. Park, “M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009). [CrossRef]
  23. I.-S. Jeong, H.-R. Park, S.-W. Lee, and M.-H. Lee, “Polymeric waveguides with Bragg gratings in the middle of the core layer,” J. Opt. Soc. Korea 13(2), 294–298 (2009). [CrossRef]
  24. P. Gadenne and G. Vuye, “In situ determination of the optical and electrical properties of thin films during their deposition,” J. Phys. E 10(7), 733–736 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited