OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24245–24257

Beam splitting at the output of photonic crystal waveguides with discrete surface point defects

Qi Wang, Lanlan Zhang, and Qi Li  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 24245-24257 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1632 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With the method of adding two point defects on modulated surface, novel photonic crystal (PC) waveguide-based beam splitters were presented. The modulated surface layer supports surface states, and introduced discrete point defects can serve as discrete light emitters. The finite-difference time-domain (FDTD) simulations show that the number of beams is sensitive to the distance of two point defects. By adjusting the positions of the point defects, 1-to-N beam splitters can be realized. These simple, easy-to-fabricate and controllable structures have important potential applications in integrated optical circuits.

© 2010 OSA

OCIS Codes
(230.1360) Optical devices : Beam splitters
(240.6690) Optics at surfaces : Surface waves
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 7, 2010
Revised Manuscript: October 14, 2010
Manuscript Accepted: October 24, 2010
Published: November 4, 2010

Qi Wang, Lanlan Zhang, and Qi Li, "Beam splitting at the output of photonic crystal waveguides with discrete surface point defects," Opt. Express 18, 24245-24257 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Y. Jiang, W. Jia, H. P. Li, X. Y. Li, C. X. Cong, and Z. X. Shen, “Inverse design for directional emitter and power splitter based on photonic crystal waveguide with surface corrugations,” J. Opt. Soc. Am. B 26(11), 2157–2160 (2009). [CrossRef]
  2. W. Y. Liang, J. W. Dong, and H. Z. Wang, “Directional emitter and beam splitter based on self-collimation effect,” Opt. Express 15(3), 1234–1239 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1234 . [CrossRef]
  3. W. Jia, L. Y. Jiang, K. Chen, and X. Y. Li, “Design of photonic crystal power beam splitters via corrugated and gratinglike surfaces,” Opt. Commun. 283(20), 4078–4084 (2010). [CrossRef]
  4. M. Q. Xin, L. Zhang, C. Eng Png, J. H. Teng, and J. Aaron Danner, “Asymmetric open cavities for beam steering and switching from line-defect photonic crystals,” J. Opt. Soc. Am. B 27(6), 1153–1157 (2010). [CrossRef]
  5. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch waves at the surface of a photonic crystal,” Phys. Rev. B Condens. Matter 44(19), 10961–10964 (1991). [CrossRef] [PubMed]
  6. R. Mousse, Th. Koschny, and C. M. Soukoulis, “Excitation of surface waves in a photonic crystal with negative refraction: The role of surface termination,” Phys. Rev. B 74(11), 115111 (2006). [CrossRef]
  7. B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74(19), 195104 (2006). [CrossRef]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)
  9. E. Moreno, F. J. García-Vidal, and L. Martín-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69(12), 121402 (2004). [CrossRef]
  10. R. Moussa, B. Wang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Effect of beaming and enhanced transmission in photonic crystals,” Phys. Rev. B 76(23), 235417 (2007). [CrossRef]
  11. S. K. Morrison and Y. S. Kivshar, “Engineering of directional emission from photonic-crystal waveguide,” Appl. Phys. Lett. 86(8), 081110 (2005). [CrossRef]
  12. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis directional beaming via photonic crystal surface modes,” Appl. Phys. Lett. 92(9), 092114 (2008). [CrossRef]
  13. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  14. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500–4502 (2003). [CrossRef]
  15. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004). http://www.opticsinfobase.org/oe/abstract. cfm?URI=oe-12-16-3694 . [CrossRef] [PubMed]
  16. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14(8), 3503–3511 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3503 . [CrossRef] [PubMed]
  17. Y. L. Zhang, D. Y. Zhao, C. H. Zhou, and X. Y. Jiang, “Directional light emission through a metallic nanostructure,” J. Appl. Phys. 105(11), 113124 (2009). [CrossRef]
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystal: Molding the flow of light (Princeton University Press, Princeton, 1995).
  19. S. S. Xiao and M. Qiu, “Optical microcavities based on surface modes in two-dimensional photonic cyetals and silicon-on-insulator photonic crystals,” J. Opt. Soc. Am. B 24(5), 1225–1229 (2007). [CrossRef]
  20. Z. F. Li, K. Aydin, and E. Ozbay, “Wide band width directional beaming via waveguide ports in photonic crystals,” J. Phys. D Appl. Phys. 41(15), 155115 (2008). [CrossRef]
  21. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
  22. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited