OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 23 — Nov. 8, 2010
  • pp: 24344–24351

Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber

Christos Markos, Kyriakos Vlachos, and George Kakarantzas  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 24344-24351 (2010)
http://dx.doi.org/10.1364/OE.18.024344


View Full Text Article

Enhanced HTML    Acrobat PDF (1071 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we demonstrate and report a photonic crystal fiber (PCF) infiltrated with PDMS elastomer which is sensitive to external bending and temperature perturbations. Numerical simulations and experimental measurements were carried out to investigate the fundamental TIR-based guiding mechanism of the hybrid PDMS/silica PCF in terms of effective index, effective modal area and loss. Wavelength dependence of bending losses was also measured for different bend diameters as well as the temperature dependence of the fundamental guiding mode for a range of temperatures from 20°C to 75°C. Experimental measurements have shown a ~6% power recovery of the bend-induced loss for a 6-cm long PDMS-filled PCF at 4 cm bend diameter.

© 2010 OSA

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(160.2290) Materials : Fiber materials
(160.5470) Materials : Polymers
(230.1150) Optical devices : All-optical devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 17, 2010
Revised Manuscript: October 27, 2010
Manuscript Accepted: October 27, 2010
Published: November 5, 2010

Citation
Christos Markos, Kyriakos Vlachos, and George Kakarantzas, "Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber," Opt. Express 18, 24344-24351 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-23-24344


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  2. A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006). [CrossRef] [PubMed]
  3. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007). [CrossRef] [PubMed]
  4. T. Larsen, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39(24), 1719–1720 (2003). [CrossRef]
  5. R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.
  6. C. M. Cordeiro, M. A. Franco, G. Chesini, E. C. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006). [CrossRef] [PubMed]
  7. S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33(22), 2578–2580 (2008). [CrossRef] [PubMed]
  8. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32(12), 1647–1649 (2007). [CrossRef] [PubMed]
  9. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-Filled Solid-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009). [CrossRef]
  10. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000). [CrossRef]
  11. Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010)
  12. J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997). [CrossRef]
  13. http://www.lumerical.com/fdtd.php
  14. N. H. Vu, I.-K. Hwang, and Y.-H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett. 33(2), 119–121 (2008). [CrossRef] [PubMed]
  15. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009). [CrossRef]
  16. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  17. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003). [CrossRef]
  18. J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13(16), 6015–6022 (2005). [CrossRef] [PubMed]
  19. T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers,” Opt. Express 15(21), 13547–13556 (2007). [CrossRef] [PubMed]
  20. W. F. Yeung and A. R. Johnston, “Effect of temperature on optical fiber transmission,” Appl. Opt. 17(23), 3703–3705 (1978). [CrossRef] [PubMed]
  21. H. R. Sørensen, J. Canning, J. Lægsgaard, and K. Hansen, “Control of the wavelength dependent thermo-optic coefficients in structured fibres,” Opt. Express 14(14), 6428–6433 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (372 KB)     
» Media 2: MOV (240 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited