OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24423–24433

Minimal state tomography of spatial qubits using a spatial light modulator

W. M. Pimenta, B. Marques, M. A. D. Carvalho, M. R. Barros, J. G. Fonseca, J. Ferraz, M. Terra Cunha, and S. Pádua  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24423-24433 (2010)
http://dx.doi.org/10.1364/OE.18.024423


View Full Text Article

Enhanced HTML    Acrobat PDF (1539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report minimal quantum state tomography with spatial qubits created by a pair of parametric down converted twin-photons passing through a double-slit. A novel experimental setup is used, which includes a Spatial Light Modulator, as a fundamental tool, to reconstruct the state density matrix. The theory needed to perform a minimal quantum tomography is described. The density matrix is experimentally obtained for the two-qubit photonic states in spatial variables.

© 2010 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 20, 2010
Revised Manuscript: October 11, 2010
Manuscript Accepted: October 27, 2010
Published: November 8, 2010

Citation
W. M. Pimenta, B. Marques, M. A. Carvalho, M. R. Barros, J. G. Fonseca, J. Ferraz, M. Terra Cunha, and S. Pádua, "Minimal state tomography of spatial qubits using a spatial light modulator," Opt. Express 18, 24423-24433 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Home, M. J. McDonnell, D. M. Lucas, G. Imreh, B. C. Keitch, D. J. Szwer, N. R. Thomas, S. C. Webster, D. N. Stacey, and A. M. Steane, “Deterministic entanglement and tomography of ion-spin qubits,” N. J. Phys. 8, 188 (2006). [CrossRef]
  2. M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schimdt, T. K. Korber, W. Hansel, H. Häffner, C. F. Hoos, and R. Blatt, “Process tomography of ion trap quantum gates,” Phys. Rev. Lett. 97, 220407 (2006). [CrossRef] [PubMed]
  3. M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52–55 (1998). [CrossRef]
  4. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001). [CrossRef]
  5. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988). [CrossRef] [PubMed]
  6. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolky-Rosen-Bohm experiment using pairs of light quanta produced by parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988). [CrossRef] [PubMed]
  7. L. Neves, G. Lima, J. G. A. Gómes, C. H. Monken, C. Saavedra, and S. Pádua, “Generation of entangled states of qudits using twin photons,” Phys. Rev. Lett. 94, 100501 (2005). [CrossRef] [PubMed]
  8. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495–2498 (1990). [CrossRef] [PubMed]
  9. A. Rossi, A. Chiuri, G. Vallone, F. De Martini, and P. Mataloni, “Multipath entanglement of two photons,” Phys. Rev. Lett. 102, 153902 (2009). [CrossRef] [PubMed]
  10. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef] [PubMed]
  11. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. L. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit comminment,” Phys. Rev. Lett. 93, 053601 (2004). [CrossRef] [PubMed]
  12. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989). [CrossRef] [PubMed]
  13. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1989). [CrossRef]
  14. A. Rossi, G. Vallone, F. de Martini, and P. Mataloni, “Generation of time-bin entangled photons without temporal post-selection,” Phys. Rev. A 78, 012345 (2008). [CrossRef]
  15. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
  16. C. Cinelli, M. Barbieri, R. Perris, P. Mataloni, and F. de Martini, “All-versus-nothing nonlocality test of quantum mechanics by two-photon hyperentaglement,” Phys. Rev. Lett. 95, 240405 (2005). [CrossRef] [PubMed]
  17. T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, M. Zukowski, Z.-B. Chen, and J.-W. Pan, “All-versus-nothing violation of local realism by two-photon, four-dimensional entaglement,” Phys. Rev. Lett. 95, 240406 (2005). [CrossRef] [PubMed]
  18. B. C. dos Santos, K. Dechoum, and A. Z. Khoury, “Continuous-variable hyperentanglement in a parametric oscillator with orbital angular momentum,” Phys. Rev. Lett. 103, 230503 (2009). [CrossRef]
  19. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally entangled states: production, characterization, and utilization,” Phys. Rev. Lett. 83, 3101–3107 (1999). [CrossRef]
  20. G. Lima, F. A. Torres-Ruiz, L. Neves, A. Delgado, C. Saavedra, and S. Pádua, “Measurement of spatial qubits,” J. Phys. B 41, 185501 (2008).
  21. G. Taguchi, T. Dougakiuchi, N. Yoshimoto, K. Kasai, M. Iinuma, H. F. Hofmann, and Y. Kadoya, “Measurement and control of spatial qubits generated by passing photons through double slits,” Phys. Rev. A 78, 012307 (2008). [CrossRef]
  22. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  23. S. Massar and S. Popescu, “Optimal extraction of information form finite quantum ensembles,” Phys. Rev. Lett. 74, 1259–1263 (1995). [CrossRef] [PubMed]
  24. R. Derka, V. Bužek, and A. K. Ekert, “Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement,” Phys. Rev. Lett. 80, 1571–1575 (1998). [CrossRef]
  25. J. I. Latorre, P. Pascual, and R. Tarrach, “Minimal optimal generalized quantum measurements,” Phys. Rev. Lett. 81, 1351–1354 (1998). [CrossRef]
  26. J. Řeháček, B.-G. Englert, and D. Kaszlikowski, “Minimal qubit tomography,” Phys. Rev. A 70, 052321 (2004). [CrossRef]
  27. A. Ling, K. P. Soh, A. Lamas-Linares, and C. Kurtsiefer, “Experimental polarization state tomography using optimal polarimeters,” Phys. Rev. A 74, 022309 (2006). [CrossRef]
  28. G. Lima, A. Vargas, L. Neves, R. Guzmán, and C. Saavedra, “Manipulating spatial qudit states with programmable optical devices,” Opt. Express 17, 10688–10696 (2009). [CrossRef] [PubMed]
  29. S. Cialdi, D. Brivio, and M. G. A. Paris, “Demonstration of a programable source of two-photon multiqubit entangled states,” http://www.arxiv.org/abs/quant-ph/0912.2975v3.
  30. E. Yao, S. Franke-Arnold, J. Courtial, M. J. Padgett, and S. M. Barnett, “Observation of quantum entanglement using spatial light modulators,” Opt. Express 14, 13089–13094 (2006). [CrossRef] [PubMed]
  31. J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R.W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287–8293 (2009). [CrossRef] [PubMed]
  32. I. Moreno, P. Velásquez, C. R. Fernández-Pousa, and M. M. Sánchez-López, “Jones matrix method for predicting and optimizing the optical modulation properties of a liquid-crystal display,” J. Appl. Phys. 94, 3697–3702 (2003). [CrossRef]
  33. . W.M. Pimenta, M. R. Barros, B. Marques, M. A. D. Carvalho, J. Ferraz, M. T. Cunha, and S. Pádua are preparing a manuscript to be called “Engineering spatial quantum states of twin-photons.”
  34. D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Multiparticle interferometry and the superposition principle,” Phys. Today 46, 22–29 (1993). [CrossRef]
  35. E. J. S. Fonseca, J. C. Machado da Silva, C. H. Monken, and S. Pádua, “Controlling two-particle conditional interference,” Phys. Rev. A 61, 023801 (2000). [CrossRef]
  36. L. Neves, G. Lima, E. J. S. Fonseca, L. Davidovich, and S. Pádua, “Characterizing entanglement in qubits created with spatially correlated twin photons,” Phys. Rev. A 76, 032314 (2007). [CrossRef]
  37. L. Neves, S. Pádua, and C. Saavedra, “Controlled generation of maximally entangled qudits using twin photons,” Phys. Rev. A 69, 042305 (2004). [CrossRef]
  38. W. K. Wootters, “Entenglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  39. D. Collins, K. W. Kim, and W. C. Holton, “Deutsch-Jozsa algorithm as a test of quantum computation,” Phys. Rev. A 58, 1633–1636 (1998). [CrossRef]
  40. . M. R. Barros, R. C. Drumond, W. M. Pimenta, B. Marques, M. A. D. Carvalho, J. Ferraz, M. T. Cunha, and S. Pádua are preparing a manuscript to be called “Optical implementation of minimal Deutsch algorithm.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited