OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24770–24792

High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser

David C. Brown, Joseph M. Singley, Katie Kowalewski, James Guelzow, and Victoria Vitali  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24770-24792 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1902 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

© 2010 OSA

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 30, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: October 28, 2010
Published: November 11, 2010

David C. Brown, Joseph M. Singley, Katie Kowalewski, James Guelzow, and Victoria Vitali, "High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser," Opt. Express 18, 24770-24792 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997). [CrossRef]
  2. D. C. Brown, “Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers,” IEEE J. Quantum Electron. 34, 2393–2402 (1998). [CrossRef]
  3. D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998). [CrossRef]
  4. T. Y. Fan, T. Crow, B. Hoden, “Cooled Yb;YAG for high-power solid-state lasers,” Proc. SPIE 3381, 200–205 (1998) (Note: A Reviewer of this paper has indicated that operation of Yb:YAG at cryogenic temperatures was achieved prior to this reference, but provided no details. We have been unable to confirm this based on our search of the open literature.). [CrossRef]
  5. P. A. Schulz, S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27, 1039–1047 (1991). [CrossRef]
  6. G. Erbert, I. Bass, R. Hackel, S. Jenkins, K. Kanz, and J. Paisner, “43-w, CW Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, DC, 1991), pp. 390–392.
  7. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005). [CrossRef]
  8. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007). [CrossRef]
  9. J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008). [CrossRef]
  10. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007). [CrossRef] [PubMed]
  11. Y. Ahahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 31, 1899–1901 (2007). [CrossRef]
  12. K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008). [CrossRef] [PubMed]
  13. K. H. Hong, C. J. Lai, A. Siddiqui, F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17(19), 16911–16919 (2009). [CrossRef] [PubMed]
  14. K. H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S. W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35(11), 1752–1754 (2010). [CrossRef] [PubMed]
  15. J. Dong, M. Bass, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003). [CrossRef]
  16. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005). [CrossRef]
  17. D. C. Brown, “High-Power Cryogenic Yb:YAG Solid-State Lasers,” 6th Annual Directed Energy Symposium Proceedings, Albuquerque, NM (2003).
  18. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005). [CrossRef]
  19. D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007). [CrossRef]
  20. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008). [CrossRef]
  21. P. Lacovara, “Energy transfer and up-conversion in Yb:YAG and Yb:Er:YAG,” Ph.D. Thesis, Boston University (1992), Available from University Microfilms Inc., Ann Arbor, MI, USA.
  22. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, (New York: Plenum, 1977) vol. 13
  23. D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005). [CrossRef]
  24. D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. (to be published).
  25. D. C. Brown, T. M. Bruno, V. Vitali, “Saturated absorption effects in CW-pumped solid-state lasers,” IEEE J. Quantum Electron. (to be published).
  26. J. Kawanaka, “New Concept of DPSSL,” US-Japan Workshop on Laser-IFE, General Atomics, San Diego (2005), http://aries.ucsd.edu/LIB/MEETINGS/0503-USJ-LIFE/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited