OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24825–24841

Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method

Xiaowei He, Jimin Liang, Xiaorui Wang, Jingjing Yu, Xiaochao Qu, Xiaodong Wang, Yanbin Hou, Duofang Chen, Fang Liu, and Jie Tian  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24825-24841 (2010)
http://dx.doi.org/10.1364/OE.18.024825


View Full Text Article

Enhanced HTML    Acrobat PDF (1505 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.

© 2010 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 18, 2010
Revised Manuscript: October 15, 2010
Manuscript Accepted: November 1, 2010
Published: November 12, 2010

Citation
Xiaowei He, Jimin Liang, Xiaorui Wang, Jingjing Yu, Xiaochao Qu, Xiaodong Wang, Yanbin Hou, Duofang Chen, Fang Liu, and Jie Tian, "Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method," Opt. Express 18, 24825-24841 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24825


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4(1), 235–260 (2002). [CrossRef] [PubMed]
  3. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7(7), 591–607 (2008). [CrossRef] [PubMed]
  4. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9(1), 123–128 (2003). [CrossRef] [PubMed]
  5. G. Wang, X. Qian, W. Cong, H. Shen, Y. Li, W. Han, K. Durairaj, M. Jiang, T. Zhou, J. Cheng, J. Tian, Y. Lv, H. Li, and J. Luo, “Recent development in bioluminescence tomography,” Curr. Med. Imaging Rev. 2(4), 453–457 (2006). [CrossRef]
  6. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50(23), 5421–5441 (2005). [CrossRef] [PubMed]
  7. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31(3), 365–367 (2006). [CrossRef] [PubMed]
  8. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Med. Phys. 35(11), 4863–4871 (2008). [CrossRef] [PubMed]
  9. G. Wang, H. Shen, W. Cong, S. Zhao, and G. W. Wei, “Temperature-modulated bioluminescence tomography,” Opt. Express 14(17), 7852–7871 (2006), http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-14-17-7852&seq=0 . [CrossRef] [PubMed]
  10. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol. 53(14), 3921–3942 (2008). [CrossRef] [PubMed]
  11. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13(18), 6756–6771 (2005), http://www.opticsinfobase.org/jdt/viewmedia.cfm?id=85344&seq=0 . [CrossRef] [PubMed]
  12. X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging 2010, 291874 (2010). [CrossRef] [PubMed]
  13. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006), http://www.opticsinfobase.org/jot/viewmedia.cfm?id=97939&seq=0 . [CrossRef] [PubMed]
  14. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express 16(20), 15640–15654 (2008), http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-16-20-15640&seq=0 . [CrossRef] [PubMed]
  15. H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys. 229(13), 5246–5256 (2010). [CrossRef]
  16. M. A. Naser and M. S. Patterson, “Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties,” J. Biomed. Opt. Express 1(2), 512–526 (2010). [CrossRef]
  17. D. Donoho, “Compresse sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). [CrossRef]
  18. E. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathematicians, (Madrid, Spain, 2006), pp. 1433–1452.
  19. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17(10), 8062–8080 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-10-8062 . [CrossRef] [PubMed]
  20. W. Cong and G. Wang, “Bioluminescence tomography based on the phase approximation model,” J. Opt. Soc. Am. A 27(2), 174–179 (2010). [CrossRef]
  21. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization,” Opt. Express 18(3), 1854–1871 (2010), http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-18-3-1854&seq=0 . [CrossRef] [PubMed]
  22. X. He, Y. Hou, D. Chen, Y. Jiang, M. Shen, J. Liu, Q. Zhang, and J. Tian, “Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method,” Int. J. Biomed. Imaging 2011, 203537 (2011). [CrossRef]
  23. S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An Interior-Point Method for Large-Scale ℓ1-Regularized Least Squares,” IEEE J. Sel. Top. Signal Process. 1(4), 606–617 (2007). [CrossRef]
  24. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005). [CrossRef]
  25. L. V. Wang, and H. Wu, Biomedical Optics: Principles and Imaging (New York: John Wiley, 2007), chap.5.
  26. H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44(12), 2897–2906 (1999). [CrossRef]
  27. Q. Z. Zhang, L. Yin, Y. Y. Tan, Z. Yuan, and H. B. Jiang, “Quantitative bioluminescence tomography guided by diffuse optical tomography,” Opt. Express 16(3), 1481–1486 (2008), http://www.opticsinfobase.org/josab/viewmedia.cfm?id=149907&seq=0 . [CrossRef] [PubMed]
  28. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22(11 Pt 1), 1779–1792 (1995). [CrossRef] [PubMed]
  29. M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Select,” IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007). [CrossRef]
  30. E. Osuna, R. Freund, and F. Girosi, “An improved algorithm for support vector machines,” in Proceedings of IEEE Signal Processing Society Workshop (Amelia Island, USA, 1997), pp. 276–285.
  31. R. Fan, P. Chen, and C. Lin, “Working Set Selection Using Second Order Information for Training Support Vector Machines,” J. Mach. Learn. Res. 6, 1889–1918 (2005).
  32. H. Qi, L. Qi, and D. Sun, “Soving Karush-Kuhn-Tucker systems via trust region and the conjugate gradient methods,” SIAM J. Optim. 14(2), 439–463 (2003). [CrossRef]
  33. X. Wang and F. Liu “Incomplete variables truncated conjugate gradient method for signal reconstruction in compressed sensing,” in preparation.
  34. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007). [CrossRef] [PubMed]
  35. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006), http://www.opticsinfobase.org/as/viewmedia.cfm?id=97670&seq=0 . [CrossRef] [PubMed]
  36. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  37. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15(26), 18300–18317 (2007), http://www.opticsinfobase.org/VJBO/viewmedia.cfm?uri=oe-15-26-18300&seq=0 . [CrossRef] [PubMed]
  38. A. Cong, W. Cong, Y. Lu, P. Santago, A. Chatziioannou, and G. Wang, “Differential evolution approach for regularized bioluminescence tomography,” IEEE Trans. Biomed. Eng. 57(9), 2229–2238 (2010). [CrossRef] [PubMed]
  39. J. Liu, Y. Wang, X. Qu, X. Li, X. Ma, R. Han, Z. Hu, X. Chen, D. Sun, R. Zhang, D. Chen, D. Chen, X. Chen, J. Liang, F. Cao, and J. Tian, “In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models,” Opt. Express 18(12), 13102–13113 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-12-13102 . [CrossRef] [PubMed]
  40. G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, “Fast cone-beam CT image reconstruction using GPU hardware,” J. XRay Sci. Technol. 16, 225–234 (2008).
  41. X. Chen, X. Gao, D. Chen, X. Ma, X. Zhao, M. Shen, X. Li, X. Qu, J. Liang, J. Ripoll, and J. Tian, “3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images,” Opt. Express 18(19), 19876–19893 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-19-19876 . [CrossRef] [PubMed]
  42. K. Liu, J. Tian, Y. Lu, C. Qin, X. Yang, S. Zhu, and X. Zhang, “A fast bioluminescent source localization method based on generalized graph cuts with mouse model validations,” Opt. Express 18(4), 3732–3745 (2010), http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-18-4-3732&seq=0 . [CrossRef] [PubMed]
  43. Y. Zhang, “Theory of compressive sensing via l1-minimization: a non-RIP analysis and extensions,” Rice University CAAM Technical Report TR08–11, (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited