OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24842–24852

Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings

Sameet K. Shriyan and Adam K. Fontecchio  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24842-24852 (2010)
http://dx.doi.org/10.1364/OE.18.024842


View Full Text Article

Enhanced HTML    Acrobat PDF (1521 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work focuses on experimentally demonstrating the modification in diffusion kinetics, formation of holographic polymer dispersed liquid crystal gratings and an improvement in its electro optic response by doping them with multi-walled carbon nanotubes. Results indicate a faster rise and fall times which is attributed to the reduction in size of the liquid crystal droplets formed and a reduction in switching voltage due to change in dielectric properties of the medium as manifested by a rise in capacitance. Real time diffraction efficiency measurements reveal a time delay in the appearance of the diffracted order due to non-participation of the nanotube in the polymerization induced phase separation process. An analysis of this effect is presented based on the Stoke- Einstein’s diffusion equation incorporating shape anisotropy of the nanotubes.

© 2010 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.2890) Holography : Holographic optical elements
(160.2100) Materials : Electro-optical materials
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Holography

History
Original Manuscript: September 17, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: November 1, 2010
Published: November 12, 2010

Citation
Sameet K. Shriyan and Adam K. Fontecchio, "Analysis of effects of oxidized multiwalled carbon nanotubes on electro-optic polymer/liquid crystal thin film gratings," Opt. Express 18, 24842-24852 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable Holographic Polymer-Dispersed Liquid Crystal Reflection Gratings Based on Thiol-Ene Photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003). [CrossRef]
  2. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76(16), 2235–2237 (2000). [CrossRef]
  3. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96(2), 951–965 (2004). [CrossRef]
  4. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “HOLOGRAPHIC POLYMER-DISPERSED LIQUID CRYSTALS (H-PDLCs)1,” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000). [CrossRef]
  5. J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34(4), 527–533 (2007). [CrossRef]
  6. S. S. Shim, J. Y. Woo, H. M. Jeong, and B. K. Kim, “High Dielectric Titanium Dioxide Doped Holographic PDLC,” Soft Mater. 7(2), 93–104 (2009). [CrossRef]
  7. L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE 4107, 46–58 (2000). [CrossRef]
  8. R. Sutherland, V. Tondiglia, L. Natarajan, S. Chandra, D. Tomlin, and T. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10(20), 1074–1082 (2002). [PubMed]
  9. J. Colegrove, J. Kelly, T. Fiske, A. Lewis, H. Yuan, H. Tran, G. P. Crawford, and L. Silverstein, “P-59: Technology of Stacking HPDLC for Higher Reflectance,” SID Symposium Digest of Technical Papers 31, 770–773 (2000).
  10. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, P. F. Lloyd, and T. J. Bunning, “Enhancing the electro-optical properties of liquid crystal nanodroplets for switchable Bragg gratings,” Proc. SPIE 7050, 705003 (2008). [CrossRef]
  11. J. Klosterman, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, T. J. White, C. A. Guymon, and T. J. Bunning, “The influence of surfactant in reflective HPDLC gratings,” Polymer (Guildf.) 45(21), 7213–7218 (2004). [CrossRef]
  12. D. Cupelli, F. P. Nicoletta, G. D. Filpo, G. Chidichimo, A. Fazio, B. Gabriele, and G. Salerno, “Fine adjustment of conductivity in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 85(15), 3292–3294 (2004). [CrossRef]
  13. J. Y. Woo, E. H. Kim, S. S. Shim, and B. K. Kim, “High dielectric anisotropy compound doped transmission gratings of HPDLC,” Opt. Commun. 281(8), 2167–2172 (2008). [CrossRef]
  14. A. V. Sadovoy and V. F. Nazvanov, “Study of the electro-optical response of polymer dispersed liquid crystal doped with multi-wall carbon nanotubes,” Proc. SPIE 6164, 616407 (2006). [CrossRef]
  15. M. Havel, K. Behler, G. Korneva, and Y. Gogotsi, “Transparent Thin Films of Multiwalled Carbon Nanotubes Self-Assembled on Polyamide 11 Nanofibers,” Adv. Funct. Mater. 18(16), 2322–2327 (2008). [CrossRef]
  16. S. Osswald, M. Havel, and Y. Gogotsi, “Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy,” J. Raman Spectros. 38(6), 728–736 (2007). [CrossRef]
  17. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y.-C. Chung, and H. G. Yoon, “Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites,” Carbon 43(1), 23–30 (2005). [CrossRef]
  18. B.-G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5(5), 1453–1465 (1989). [CrossRef]
  19. S. Park, H.-K. Kim, and J. W. Hong, “Investigation of the photopolymerization-induced phase separation process in polymer dispersed liquid crystal,” Polym. Test. 29(7), 886–893 (2010). [CrossRef]
  20. T. J. White, L. V. Natarajan, V. P. Tondiglia, P. F. Lloyd, T. J. Bunning, and C. A. Guymon, “Holographic polymer dispersed liquid crystals (HPDLCs) containing triallyl isocyanurate monomer,” Polymer (Guildf.) 48(20), 5979–5987 (2007). [CrossRef]
  21. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30(8), 839–841 (2005). [CrossRef] [PubMed]
  22. A. I. Goncharuk, N. I. Lebovka, L. N. Lisetski, and S. S. Minenko, “Aggregation, percolation and phase transitions in nematic liquid crystal EBBA doped with carbon nanotubes,” J. Phys. D Appl. Phys. 42(16), 165411 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited