OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24881–24887

All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation

Christoph Vannahme, Sönke Klinkhammer, Mads Brøkner Christiansen, Alexander Kolew, Anders Kristensen, Uli Lemmer, and Timo Mappes  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24881-24887 (2010)
http://dx.doi.org/10.1364/OE.18.024881


View Full Text Article

Enhanced HTML    Acrobat PDF (917 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Organic semiconductor lasers are of particular interest as tunable visible laser light sources. For bringing those to market encapsulation is needed to ensure practicable lifetimes. Additionally, fabrication technologies suitable for mass production must be used. We introduce all-polymer chips comprising encapsulated distributed feedback organic semiconductor lasers. Several chips are fabricated in parallel by thermal nanoimprint of the feedback grating on 4″ wafer scale out of poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC). The lasers consisting of the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM) are hermetically sealed by thermally bonding a polymer lid. The organic thin film is placed in a basin within the substrate and is not in direct contact to the lid. Thus, the spectral properties of the lasers are unmodified in comparison to unencapsulated lasers. Grating periods of 378 nm to 428 nm in steps of 10 nm result in lasing at wavelengths of 622 nm to 685 nm. The operational lifetime of the lasers expressed in number of pulses is improved 11-fold (PMMA) and 3-fold (COC) in comparison to unencapsulated PMMA devices.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.7300) Lasers and laser optics : Visible lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 30, 2010
Revised Manuscript: October 30, 2010
Manuscript Accepted: November 1, 2010
Published: November 12, 2010

Citation
Christoph Vannahme, Sönke Klinkhammer, Mads Brøkner Christiansen, Alexander Kolew, Anders Kristensen, Uli Lemmer, and Timo Mappes, "All-polymer organic semiconductor laser chips:
Parallel fabrication and encapsulation," Opt. Express 18, 24881-24887 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24881


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007). [CrossRef] [PubMed]
  2. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001). [CrossRef]
  3. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006). [CrossRef]
  4. C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007). [CrossRef]
  5. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006). [CrossRef] [PubMed]
  6. H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008). [CrossRef]
  7. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008). [CrossRef]
  8. B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010). [CrossRef] [PubMed]
  9. S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010). [CrossRef]
  10. T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1-2), 47–51 (2010). [CrossRef]
  11. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27(14), 1220–1222 (2002). [CrossRef]
  12. C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010). [CrossRef]
  13. T. Woggon, M. Punke, M. Stroisch, M. Bruendel, M. Schelb, C. Vannahme, T. Mappes, J. Mohr, and U. Lemmer, “Organic semiconductor lasers as integrated light sources for optical sensors,” in McGraw-Hill volume on Organic Electronics in Sensors and Biotechnology, J. Shinar and R. Shinar, eds. (McGraw-Hill, New York 2009).
  14. V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998). [CrossRef] [PubMed]
  15. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007). [CrossRef]
  16. L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009). [CrossRef]
  17. HesaGlas® VOS, acquired from Notz Plastics AG, www.notzplastics.ch .
  18. TOPAS® 6013, acquired from TOPAS Advanced Polymers, Inc., www.topas.com .
  19. C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009). [CrossRef]
  20. V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998). [CrossRef]
  21. O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).
  22. G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005). [CrossRef]
  23. C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, “Optofluidic dye laser in a foil,” Opt. Express 18(9), 9280–9285 (2010). [CrossRef] [PubMed]
  24. V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575–2577 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited