OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24902–24916

Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy

Nicole M. Putnam, Daniel X. Hammer, Yuhua Zhang, David Merino, and Austin Roorda  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 24902-24916 (2010)
http://dx.doi.org/10.1364/OE.18.024902


View Full Text Article

Acrobat PDF (1280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To better understand the limitations of high-resolution adaptive optics scanning laser ophthalmoscopy (AOSLO), we describe an imaging model that examines the smallest cone photoreceptors in the fovea of normal human subjects and analyze how different factors contribute to their resolution. The model includes basic optical factors such as wavelength and pupil size, and defines limits caused by source coherence which are specific to the AOSLO imaging modality as well as foveal cone structure. The details of the model, its implications for imaging, and potential techniques to circumvent the limitations are discussed in this paper.

© 2010 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(110.4500) Imaging systems : Optical coherence tomography
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.7326) Vision, color, and visual optics : Visual optics, modeling
(330.7331) Vision, color, and visual optics : Visual optics, receptor optics
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: August 17, 2010
Revised Manuscript: October 13, 2010
Manuscript Accepted: October 22, 2010
Published: November 15, 2010

Citation
Nicole M. Putnam, Daniel X. Hammer, Yuhua Zhang, David Merino, and Austin Roorda, "Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy," Opt. Express 18, 24902-24916 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-24902


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405 . [PubMed]
  2. E. A. Rossi and A. Roorda, “The limits of high contrast photopic visual acuity with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 47, 5402 (2006).
  3. E. A. Rossi, P. Weiser, J. Tarrant, and A. Roorda, “Visual performance in emmetropia and low myopia after correction of high-order aberrations,” J. Vis. 7(8), 14 (2007). [CrossRef] [PubMed]
  4. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci. 13(2), 156–157 (2010). [CrossRef] [PubMed]
  5. S. B. Stevenson and A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
  6. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg. 21(5), S575–S580 (2005). [PubMed]
  7. S. Stevenson, G. Kumar, and A. Roorda, “Eye Movements: Saccades and Smooth Pursuit: Psychophysical and oculomotor reference points for visual direction measured with the adaptive optics scanning laser ophthalmoscope,” J. Vis. 7(9), 137 (2007). [CrossRef]
  8. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci. 87(4), 260–268 (2010). [PubMed]
  9. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006). [CrossRef] [PubMed]
  10. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12230 . [CrossRef] [PubMed]
  11. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13731 . [CrossRef] [PubMed]
  12. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007). [CrossRef] [PubMed]
  13. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008). [CrossRef] [PubMed]
  14. J. I. Morgan, A. Dubra, R. Wolfe, W. H. Merigan, and D. R. Williams, “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2008). [CrossRef] [PubMed]
  15. G. L. Walls, The vertebrate eye and its adaptive radiation (Cranbrook Institute of Science, Bloomfield Hills, MI, 1942), Chap. 3,8.
  16. J. E. Dowling, The retina: an approachable part of the brain (Harvard University Press, Cambridge, MA, 1987), Chap. 2.
  17. M. Schultze, “The retina,” in Manual of human and comparative histology, S. Stricker, ed. (New Sydenham Society, London, 1873).
  18. K. Y. Li, P. Tiruveedhula, and A. Roorda, “Inter-subject variability of foveal cone photoreceptor density in relation to eye length,” Invest. Ophthalmol. Vis. Sci. (Accepted). [PubMed]
  19. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, “The locus of fixation and the foveal cone mosaic,” J. Vis. 5(7), 632–639 (2005). [CrossRef] [PubMed]
  20. Y. Zhang, S. Poonja, and A. Roorda, “AOSLO: from Benchtop to Clinic,” Proc. SPIE 6306, 63060V (2006).
  21. A. M. Laties, and B. Burnside, “The maintenance of photoreceptor orientation,” in Motility and Cell Function: Proceedings of the First John M. Marshall Symposium in Cell Biology, F. Pepe, V. Nachmias and J.W. Sanger, eds. (Academic Press, New York, 1978).
  22. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Vis. 2(5), 404–412 (2002). [CrossRef] [PubMed]
  23. W. Gao, R. S. Jonnal, B. Cense, O. P. Kocaoglu, Q. Wang, and D. T. Miller, “Measuring directionality of the retinal reflection with a Shack-Hartmann wavefront sensor,” Opt. Express 17(25), 23085–23097 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23085 . [CrossRef] [PubMed]
  24. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999). [CrossRef] [PubMed]
  25. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16141 . [CrossRef] [PubMed]
  26. B. Borwein, “Scanning electron microscopy of monkey foveal photoreceptors,” Anat. Rec. 205(3), 363–373 (1983). [CrossRef] [PubMed]
  27. S. L. Polyak, The Retina (University of Chicago Press, Chicago, IL, 1941), Chap. 19.
  28. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging,” J. Opt. Soc. Am. A 24(5), 1327–1336 (2007). [CrossRef] [PubMed]
  29. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007). [CrossRef] [PubMed]
  30. A. Pallikaris, D. R. Williams, and H. Hofer, “The reflectance of single cones in the living human eye,” Invest. Ophthalmol. Vis. Sci. 44(10), 4580–4592 (2003). [CrossRef] [PubMed]
  31. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990). [CrossRef] [PubMed]
  32. G. Westheimer, “Dependence of the magnitude of the Stiles-Crawford effect on retinal location,” J. Physiol. 192(2), 309–315 (1967). [PubMed]
  33. J. M. Enoch, “Optical properties of the retinal receptors,” J. Opt. Soc. Am. 53(1), 71–85 (1963). [CrossRef]
  34. B. Hermann, S. Michels, R. Leitgeb, C. Ahlers, B. Povazay, S. Sacu, H. Sattmann, A. Unterhuber, U. Schmidt-Erfurth, and W. Drexler, “Thickness mapping of photoreceptors of the foveal region in normals using three-dimensional optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46, 3971 (2005).
  35. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang, and D. T. Miller, “Imaging outer segment renewal in living human cone photoreceptors,” Opt. Express 18(5), 5257–5270 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5257 . [CrossRef] [PubMed]
  36. A. Roorda and Y. Zhang, “Mechanism for Cone Reflectivity Revealed with low coherence AOSLO imaging,” Invest. Ophthalmol. Vis. Sci. 46, 2433 (2005). [CrossRef] [PubMed]
  37. T. Wilson, and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London 1984), Chap. 3.
  38. Y. Zhang and A. Roorda, “Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 11(1), 014002 (2006). [CrossRef] [PubMed]
  39. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-487 . [CrossRef] [PubMed]
  40. D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Vis. Sci. 19(6), 653–667 (1980). [PubMed]
  41. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13(2), 024008 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited