OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 24917–24925

Hollow Bragg waveguides fabricated by controlled buckling of Si/SiO2 multilayers

E. Epp, N. Ponnampalam, W. Newman, B. Drobot, J. N. McMullin, A. F. Meldrum, and R. G. DeCorby  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 24917-24925 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe integrated air-core waveguides with Bragg reflector claddings, fabricated by controlled delamination and buckling of sputtered Si/SiO2 multilayers. Thin film deposition parameters were tailored to produce a desired amount of compressive stress, and a patterned, embedded fluorocarbon layer was used to define regions of reduced adhesion. Self-assembled air channels formed either spontaneously or upon heating-induced decomposition of the patterned film. Preliminary optical experiments confirmed that light is confined to the air channels by a photonic band-gap guidance mechanism, with loss ~5 dB/cm in the 1550 nm wavelength region. The waveguides employ standard silicon processes and have potential applications in MEMS and lab-on-chip systems.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: August 5, 2010
Revised Manuscript: October 29, 2010
Manuscript Accepted: October 31, 2010
Published: November 15, 2010

E. Epp, N. Ponnampalam, W. Newman, B. Drobot, J. N. McMullin, A. F. Meldrum, and R. G. DeCorby, "Hollow Bragg waveguides fabricated by controlled buckling of Si/SiO2 multilayers," Opt. Express 18, 24917-24925 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Schmidt, J. P. Dongliang Yin, Barber, and A. R. Hawkins, “Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005). [CrossRef]
  2. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17(3), 1508–1517 (2009). [CrossRef] [PubMed]
  3. T. C. Shen, Y. S. Kim, J. A. Bur, and S.-Y. Lin, “Optical characterization of bending efficiency in on-chip hollow-core Bragg waveguides at λ = 1.5 μm,” J. Lightwave Technol. 28(11), 1714–1719 (2010). [CrossRef]
  4. M. Kumar, T. Sakaguchi, and F. Koyama, “Wide tunability and ultralarge birefringence with 3D hollow waveguide Bragg reflector,” Opt. Lett. 34(8), 1252–1254 (2009). [CrossRef] [PubMed]
  5. E. Epp, N. Ponnampalam, J. N. McMullin, and R. G. Decorby, “Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling,” Opt. Express 17(20), 17369–17375 (2009). [CrossRef] [PubMed]
  6. S.-S. Lo, M.-S. Wang, and C.-C. Chen, “Semiconductor hollow optical waveguides formed by omni-directional reflectors,” Opt. Express 12(26), 6589–6593 (2004). [CrossRef] [PubMed]
  7. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, “Guided self-assembly of integrated hollow Bragg waveguides,” Opt. Express 15(7), 3902–3915 (2007). [CrossRef] [PubMed]
  8. N. Ponnampalam and R. G. Decorby, “Self-assembled hollow waveguides with hybrid metal-dielectric Bragg claddings,” Opt. Express 15(20), 12595–12604 (2007). [CrossRef] [PubMed]
  9. M.-W. Moon, K.-R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates,” Acta Mater. 52(10), 3151–3159 (2004). [CrossRef]
  10. N. Ponnampalam and R. G. DeCorby, “Out-of-plane coupling at mode cutoff in tapered hollow waveguides with omnidirectional reflector claddings,” Opt. Express 16(5), 2894–2908 (2008). [CrossRef] [PubMed]
  11. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009). [CrossRef] [PubMed]
  12. B. Gallas, S. Fisson, E. Charron, A. Brunet-Bruneau, G. Vuye, and J. Rivory, “Making an omnidirectional reflector,” Appl. Opt. 40(28), 5056–5063 (2001). [CrossRef]
  13. H. Piller, “Silicon (amorphous) (a-Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic Press, San Diego, 1998).
  14. Q. Song, F. Huang, M. Li, B. Xie, H. Wang, Y. Jiang, and Y. Song, “Graded refractive-index SiOx infrared filters prepared by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 26(2), 265–269 (2008). [CrossRef]
  15. H.-Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett. 81(24), 4502–4504 (2002). [CrossRef]
  16. H. Yoda, K. Shiraishi, Y. Hiratani, and O. Hanaizumi, “a-Si:H/SiO2 multilayer films fabricated by radio-frequency magnetron sputtering for optical filters,” Appl. Opt. 43(17), 3548–3554 (2004). [CrossRef] [PubMed]
  17. H. Windischmann, “Intrinsic stress in sputter-deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17(6), 547–596 (1992). [CrossRef]
  18. B. Bhushan, “Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction,” J. Vac. Sci. Technol. B 21(6), 2262–2296 (2003). [CrossRef]
  19. Y. X. Zhuang and A. Menon, “On the stiction of MEMS materials,” Tribol. Lett. 19(2), 111–117 (2005). [CrossRef]
  20. H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, “Applications of fluorocarbon polymers in micromechanics and micromachining,” Sens. Actuators A Phys. 41(1-3), 136–140 (1994). [CrossRef]
  21. B. K. Smith, J. J. Sniegowski, G. LaVigne, and C. Brown, “Thin Teflon-like films for eliminating adhesion in released polysilicon microstructures,” Sens. Actuators A Phys. 70(1-2), 159–163 (1998). [CrossRef]
  22. A. A. Ayon, D.-Z. Chen, R. Khanna, R. Braff, H. H. Sawin, and M. A. Schmidt, “A novel integrated MEMS process using fluorocarbon films deposited with a deep reactive ion etching (DRIE) tool,” Mater. Res. Soc. Symp. Proc. 605, 141–147 (2000). [CrossRef]
  23. J. Han, J. Yeom, G. Mensing, D. Joe, R. I. Masel, and M. A. Shannon, “Surface energy approach and AFM verification of the (CF)n treated surface effect and its correlation with adhesion reduction in microvalves,” J. Micromech. Microeng. 19(8), 085017 (2009). [CrossRef]
  24. Y. X. Zhuang and A. Menon, “Wettability and themal stability of fluorocarbon films deposited by deep reactive ion etching,” J. Vac. Sci. Technol. A 23(3), 434–439 (2005). [CrossRef]
  25. P. J. Joseph, H. A. Kelleher, S. A. B. Allen, and P. A. Kohl, “Improved fabrication of micro air-channels by incorporation of a structural barrier,” J. Micromech. Microeng. 15(1), 35–42 (2005). [CrossRef]
  26. M. M. de Lima, R. G. Lacerda, J. Vilcarromero, and F. C. Marques, “Coefficient of thermal expansion and elastic modulus of thin films,” J. Appl. Phys. 86(9), 4936–4942 (1999). [CrossRef]
  27. W. D. Nix, “Mechanical properties of thin films,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 20(11), 2217–2245 (1989). [CrossRef]
  28. S. Dasgupta, A. Ghatak, and B. P. Pal, “Analysis of Bragg reflection waveguides with finite cladding: an accurate matrix method formulation,” Opt. Commun. 279(1), 83–88 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited