OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25008–25015

Blue laser-sensitized photopolymer for a holographic high density data storage system

Yong-Cheol Jeong, Bokyung Jung, Dowon Ahn, and Jung-Ki Park  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25008-25015 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new blue-sensitized photopolymer to achieve a higher storage density compared to green/red-recordable media. Photopolymers are prepared based on a two-chemistry system and their holographic recording properties are investigated. A matrix of long and flexible ether units of an epoxy precursor and a multi-crosslinkable amine hardener enhances energetic sensitivity and suppresses volume shrinkage effectively. Page-wise recording of 961 bits/page of digital data is demonstrated and long term recording stability is also verified for a period of roughly 2 months.

© 2010 OSA

OCIS Codes
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings

ToC Category:

Original Manuscript: October 21, 2010
Revised Manuscript: November 10, 2010
Manuscript Accepted: November 10, 2010
Published: November 16, 2010

Yong-Cheol Jeong, Bokyung Jung, Dowon Ahn, and Jung-Ki Park, "Blue laser-sensitized photopolymer for a holographic high density data storage system," Opt. Express 18, 25008-25015 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998). [CrossRef]
  2. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36(19), 4339–4348 (1997). [CrossRef] [PubMed]
  3. M. I. Lutwyche, M. Despont, U. Drechsler, U. Dürig, W. Häberle, H. Rothuizen, R. Stutz, R. Widmer, G. K. Binnig, and P. Vettiger, “Highly parallel data storage system based on scanning probe arrays,” Appl. Phys. Lett. 77(20), 3299–3301 (2000). [CrossRef]
  4. B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, J. Ehrlich, L. Erskine, A. Heikal, S. Kuebler, I. Lee, and D. McCord-Maughon, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999). [CrossRef]
  5. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994). [CrossRef] [PubMed]
  6. L. Hesselink, S. Orlov, and M. Bashaw, “Holographic data storage systems,” Proc. IEEE 92(8), 1231–1280 (2004). [CrossRef]
  7. J. Lawrence, F. O'Neill, and J. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
  8. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996). [CrossRef] [PubMed]
  9. P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405nm,” Proc. SPIE 5380, 283–288 (2004). [CrossRef]
  10. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39(14), 2353–2358 (2000). [CrossRef]
  11. L. Dhar, A. Hale, H. E. Katz, M. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24(7), 487–489 (1999). [CrossRef]
  12. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000). [CrossRef]
  13. Y. C. Jeong, S. Lee, and J. K. Park, “Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers,” Opt. Express 15(4), 1497–1504 (2007). [CrossRef] [PubMed]
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
  15. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23(21), 1710–1712 (1998). [CrossRef]
  16. J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005). [CrossRef] [PubMed]
  17. Ó. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 141115 (2007). [CrossRef]
  18. S. Piazzolla and B. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. A 17(7), 1147–1157 (2000). [CrossRef]
  19. V. Colvin, R. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited