OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25016–25028

Distinguishing between ultrafast optical harmonic generation and multi-photon-induced luminescence from ZnO thin films by frequency-resolved interferometric autocorrelation microscopy

S. Schmidt, M. Mascheck, M. Silies, T. Yatsui, K. Kitamura, M. Ohtsu, and C. Lienau  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25016-25028 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear optical properties of thin ZnO film are studied using interferometric autocorrelation (IFRAC) microscopy. Ultrafast, below-bandgap excitation with 6-fs laser pulses at 800 nm focused to a spot size of 1 µm results in two emission bands in the blue and blue-green spectral region with distinctly different coherence properties. We show that an analysis of the wavelength-dependence of the interference fringes in the IFRAC signal allows for an unambiguous assignment of these bands as coherent second harmonic emission and incoherent, multiphoton-induced photoluminescence, respectively. More generally our analysis shows that IFRAC allows for a complete characterization of the coherence properties of the nonlinear optical emission from nanostructures in a single-beam experiment. Since this technique combines a very high temporal and spatial resolution we anticipate broad applications in nonlinear nano-optics.

© 2010 OSA

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

Original Manuscript: October 4, 2010
Revised Manuscript: November 7, 2010
Manuscript Accepted: November 7, 2010
Published: November 16, 2010

S. Schmidt, M. Mascheck, M. Silies, T. Yatsui, K. Kitamura, M. Ohtsu, and C. Lienau, "Distinguishing between ultrafast optical harmonic generation and multi-photon-induced luminescence from ZnO thin films by frequency-resolved interferometric autocorrelation microscopy," Opt. Express 18, 25016-25028 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11543), 1–10 (2003). [CrossRef]
  2. D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87(10), 101106 (2005). [CrossRef]
  3. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2(8-9), 944–961 (2006). [CrossRef] [PubMed]
  4. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dŏgan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005). [CrossRef]
  5. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3(5), 279–282 (2009). [CrossRef]
  6. C. F. Zhang, Z. W. Dong, K. J. Liu, Y. L. Yan, S. X. Qian, and H. Deng, “Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes,” Appl. Phys. Lett. 91(14), 142109 (2007). [CrossRef]
  7. T. Tritschler, O. D. Mücke, M. Wegener, U. Morgner, and F. X. Kärtner, “Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics,” Phys. Rev. Lett. 90(21), 217404 (2003). [CrossRef] [PubMed]
  8. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett. 84(2), 170–172 (2004). [CrossRef]
  9. D. C. Dai, S. J. Xu, S. J. Shi, M. H. Xie, and C. M. Che, “Observation of Both Second-Harmonic and Multiphoton-Absorption-Induced Luminescence In ZnO,” IEEE Photon. Technol. Lett. 18(14), 1533–1535 (2006). [CrossRef]
  10. N. S. Han, H. S. Shim, S. Min Park, and J. K. Song, “Second-harmonic Generation and Multiphoton Induced Photoluminescence in ZnO,” Bull. Korean Chem. Soc. Vol. 30(10), 2199–2200 (2009). [CrossRef]
  11. C. F. Zhang, Z. W. Dong, G. J. You, R. Y. Zhu, S. X. Qiana, H. Deng, H. Cheng, and J. C. Wang, “Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires,” App, Phys. Lett. 89, 042117 (2006). [CrossRef]
  12. S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B 77(11), 113311 (2008). [CrossRef]
  13. K. Pedersen, C. Fisker, and T. G. Pedersen, “Second-harmonic generation from ZnO nanowires,” Phys. Status Solidi 5(8), 2671–2674 (2008). [CrossRef]
  14. S. K. Das, M. Bock, C. O’Neill, R. Grunwald, K. M. Lee, H. W. Lee, S. Lee, and F. Rotermund, “Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses,” Appl. Phys. Lett. 93(18), 181112 (2008). [CrossRef]
  15. Y. C. Zhong, K. S. Wong, A. B. Djurisic, and Y. F. Hsu, “Study of optical transitions in an individual ZnO tetrapod using two-photon photoluminescence excitation spectrum,” Appl. Phys. B 97(1), 125–128 (2009). [CrossRef]
  16. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B 61(22), 15019–15027 (2000). [CrossRef]
  17. H. L. Wang, J. Shah, T. C. Damen, and L. N. Pfeiffer, “Spontaneous emission of excitons in GaAs quantum wells: The role of momentum scattering,” Phys. Rev. Lett. 74(15), 3065–3068 (1995). [CrossRef] [PubMed]
  18. S. Haacke, R. A. Taylor, R. Zimmermann, I. Bar-Joseph, and B. Deveaud, “Resonant femtosecond emission from quantum well excitons: The role of Rayleigh scattering and luminescence,” Phys. Rev. Lett. 78(11), 2228–2231 (1997). [CrossRef]
  19. M. Gurioli, F. Bogani, S. Ceccherini, and M. Colocci, “Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation,” Phys. Rev. Lett. 78(16), 3205–3208 (1997). [CrossRef]
  20. G. Stibenz and G. Steinmeyer, “Interferometric frequency-resolved optical gating,” Opt. Express 13(7), 2617–2626 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-7-2617 . [CrossRef] [PubMed]
  21. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, “Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures,” Adv. Funct. Mater. 14(9), 856–864 (2004) (and references therein). [CrossRef]
  22. G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. S. Wyatt, I. A. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83(4), 511–519 (2006). [CrossRef]
  23. A. Anderson, K. S. Deryckx, X. G. Xu, G. Steinmeyer, and M. B. Raschke, “Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating,” Nano Lett. 10(7), 2519–2524 (2010). [CrossRef] [PubMed]
  24. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: Basic processes and Applications (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited