OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25029–25034

Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity

Yongmin Liu, Sheng Wang, Yong-Shik Park, Xiaobo Yin, and Xiang Zhang  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 25029-25034 (2010)
http://dx.doi.org/10.1364/OE.18.025029


View Full Text Article

Enhanced HTML    Acrobat PDF (1057 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that photons can be efficiently extracted from fluorescent molecules, utilizing the strongly enhanced local field of a two-dimensional dielectric annular Bragg resonant cavity. Due to the diffraction and constructive interference together with the annular focusing, the periodic ring structure converts the normal incident light into planar guided modes and forms a hot spot at the center of the structure. Theoretically, the field can be enhanced more than 40 times, which leads to the averaged 20-fold enhancement of the fluorescence signal observed in experiments. Compared with fluorescence enhancement by plasmonic structures, this dielectric approach does not suffer from pronounced quenching that often occurs near metallic structures. These results not only can be applied as ultrasensitive sensors for various biological systems, but also have broad potential applications, such as optical trapping and fluorescent microscopy.

© 2010 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(300.2530) Spectroscopy : Fluorescence, laser-induced
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Spectroscopy

History
Original Manuscript: September 29, 2010
Revised Manuscript: November 1, 2010
Manuscript Accepted: November 8, 2010
Published: November 16, 2010

Citation
Yongmin Liu, Sheng Wang, Yong-Shik Park, Xiaobo Yin, and Xiang Zhang, "Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity," Opt. Express 18, 25029-25034 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-25029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  2. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008). [CrossRef]
  3. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005). [CrossRef] [PubMed]
  4. Y. J. Hung, I. I. Smolyaninov, C. C. Davis, and H. C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express 14(22), 10825–10830 (2006). [CrossRef] [PubMed]
  5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  6. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007). [CrossRef] [PubMed]
  7. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Single-molecule fluorescence enhancements produced by a Bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009). [CrossRef]
  8. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7(4), 1076–1080 (2007). [CrossRef] [PubMed]
  9. V. G. Kravets, G. Zoriniants, C. P. Burrows, F. Schedin, A. K. Geim, W. L. Barnes, and A. N. Grigorenko, “Composite au nanostructures for fluorescence studies in visible light,” Nano Lett. 10(3), 874–879 (2010). [CrossRef] [PubMed]
  10. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  11. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Virjen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999). [CrossRef]
  12. M. Laroche, S. Albaladejo, R. Carminati, and J. J. Sáenz, “Optical resonances in one-dimensional dielectric nanorod arrays: field-induced fluorescence enhancement,” Opt. Lett. 32(18), 2762–2764 (2007). [CrossRef] [PubMed]
  13. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007). [CrossRef]
  14. N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008). [CrossRef] [PubMed]
  15. P. Karvinen, T. Nuutinen, O. Hyvärinen, and P. Vahimaa, “Enhancement of laser-induced fluorescence at 473 nm excitation with subwavelength resonant waveguide gratings,” Opt. Express 16(21), 16364–16370 (2008). [CrossRef] [PubMed]
  16. U. Becherer, T. Moser, W. Stühmer, and M. Oheim, “Calcium regulates exocytosis at the level of single vesicles,” Nat. Neurosci. 6(8), 846–853 (2003). [CrossRef] [PubMed]
  17. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  18. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009). [CrossRef] [PubMed]
  19. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008). [CrossRef]
  20. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003). [CrossRef] [PubMed]
  21. J. Scheuer and A. Yariv, “Annular Bragg defect mode resonators,” J. Opt. Soc. Am. B 20(11), 2285 (2003). [CrossRef]
  22. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005). [CrossRef]
  23. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 392–402 (1902).
  24. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990). [CrossRef]
  25. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  26. Ö. Duyar, F. Placido, and H. Z. Durusoy, “Optimization of TiO2 films prepared by reactive electron beam evaporation of Ti3O5,” J. Phys. D Appl. Phys. 41(9), 095307 (2008). [CrossRef]
  27. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited