OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25035–25051

Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam

Liang Jie Wong and Franz X. Kärtner  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25035-25051 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the direct acceleration of a free electron in infinite vacuum along the axis of a pulsed radially-polarized laser beam. We find that net energy transfer from laser pulse to electron is maximized with the tightest focusing. We show that the net energy gain of an electron initially moving at a relativistic velocity may exceed more than half the theoretical limit of energy transfer, which is not possible with an initially stationary electron in the parameter space studied. We determine and analyze the power scaling of maximum energy gain, extending our study to include a relatively unexplored regime of low powers and revealing that substantial acceleration is already possible without the use of petawatt peak-power laser technology.

© 2010 OSA

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(350.4990) Other areas of optics : Particles
(350.5400) Other areas of optics : Plasmas
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Atomic and Molecular Physics

Original Manuscript: October 4, 2010
Revised Manuscript: November 8, 2010
Manuscript Accepted: November 9, 2010
Published: November 16, 2010

Liang Jie Wong and Franz X. Kärtner, "Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam," Opt. Express 18, 25035-25051 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008). [CrossRef]
  2. R. Fung, V. Shneerson, D. K. Saldin, and A. Ourmazd, “Structure from fleeting illumination of faint spinning objects in flight,” Nat. Phys. 5(1), 64–67 (2009). [CrossRef]
  3. A. H. Sari, F. Osman, K. R. Doolan, M. Ghoranneviss, H. Hora, R. Hopfl, G. Benstetter, and M. H. Hantehzadeh, “Application of laser driven fast high density plasma blocks for ion implantation,” Laser Part. Beams 23(04), 467–473 (2005). [CrossRef]
  4. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985). [CrossRef]
  5. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24(3), 160–162 (1999). [CrossRef]
  6. S. V. Bulanov, T. Esirkepov, and T. Tajima, “Light intensification towards the Schwinger limit,” Phys. Rev. Lett. 91(8), 085001 (2003). [CrossRef] [PubMed]
  7. E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81(3), 1229–1285 (2009). [CrossRef]
  8. Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2-3), 41–155 (2006). [CrossRef]
  9. E. D. Courant, C. Pellegrini, and W. Zakowicz, “High-energy inverse free-electron-laser accelerator,” Phys. Rev. A 32(5), 2813–2823 (1985). [CrossRef] [PubMed]
  10. W. D. Kimura, A. van Steenbergen, M. Babzien, I. Ben-Zvi, L. P. Campbell, D. B. Cline, C. E. Dilley, J. C. Gallardo, S. C. Gottschalk, P. He, K. P. Kusche, Y. Liu, R. H. Pantell, I. V. Pogorelsky, D. C. Quimby, J. Skaritka, L. C. Steinhauer, and V. Yakimenko, “First staging of two laser accelerators,” Phys. Rev. Lett. 86(18), 4041–4043 (2001). [CrossRef] [PubMed]
  11. H. Hora, “Particle acceleration by superposition of frequency-controlled laser pulses,” Nature 333(6171), 337–338 (1988). [CrossRef]
  12. E. Esarey, P. Sprangle, and J. Krall, “Laser acceleration of electrons in vacuum,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(5), 5443–5453 (1995). [CrossRef] [PubMed]
  13. F. V. Hartemann, S. N. Fochs, N. C. Luhmann, J. G. Woodworth, M. D. Perry, Y. J. Chen, A. K. Kerman, A. K. Kerman, and G. P. Le Sage, “Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51(5), 4833–4843 (1995).
  14. B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 58(3), 3719–3732 (1998).
  15. G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78(17), 3314–3317 (1997). [CrossRef]
  16. G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001). [CrossRef] [PubMed]
  17. P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253 (2001). [CrossRef]
  18. Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002). [CrossRef] [PubMed]
  19. S. X. Hu and A. F. Starace, “GeV electrons from ultraintense laser interaction with highly charged ions,” Phys. Rev. Lett. 88(24), 245003 (2002). [CrossRef] [PubMed]
  20. T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer, and R. H. Siemann, “Visible-laser acceleration of relativistic electrons in a semi-infinite vacuum,” Phys. Rev. Lett. 95(13), 134801 (2005). [CrossRef] [PubMed]
  21. Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Byer, “Proposed structure for a crossed-laser beam, GeV per meter gradient, vacuum electron linear accelerator,” Appl. Phys. Lett. 68(6), 753–755 (1996). [CrossRef]
  22. M. O. Scully and M. S. Zubairy, “Simple laser accelerator: Optics and particle dynamics,” Phys. Rev. A 44(4), 2656–2663 (1991). [CrossRef] [PubMed]
  23. Y. I. Salamin, “Electron acceleration from rest in vacuum by an axicon Gaussian laser beam,” Phys. Rev. A 73(4), 043402 (2006). [CrossRef]
  24. Y. I. Salamin, “Mono-energetic GeV electrons from ionization in a radially polarized laser beam,” Opt. Lett. 32(1), 90–92 (2007). [CrossRef]
  25. P.-L. Fortin, M. Piché, and C. Varin, “Direct-field electron acceleration with ultrafast radially-polarized laser beams: Scaling laws and optimization,” J. Phys. At. Mol. Opt. Phys. 43(2), 025401 (2010). [CrossRef]
  26. C. Varin, M. Piché, and M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026603 (2005). [CrossRef] [PubMed]
  27. A. Karmakar and A. Pukhov, “Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses,” Laser Part. Beams 25(03), 371–377 (2007). [CrossRef]
  28. E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46(10), 6640–6653 (1992). [CrossRef] [PubMed]
  29. W. S. Graves, W. Brown, F. X. Kärtner, and D. E. Moncton, “MIT inverse Compton source concept,” Nucl. Instr. Meth. A 608(1), S103–S105 (2009). [CrossRef]
  30. K. T. MacDonald, “Gaussian laser beams with radial polarization” (2000). http://puhep1.princeton.edu/~mcdonald/examples/axicon.pdf
  31. T. Shiozawa, Classical Relativistic Electrodynamics (Springer-Verlag, 2004), Chap. 2.
  32. C. Varin, M. Piché, and M. A. Porras, “Analytical calculation of the strong axial longitudinal electric field resulting from the tight focusing of an ultrafast transverse magnetic pulsed beam in free space,” J. Opt. Soc. Am. A 23, 2027–2038 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited