OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25052–25060

Rabi splitting induced by a metamaterial plasmon cavity

Liwei Zhang, Yewen Zhang, Yuhuan Zhao, Jiwei Zhai, and Lixin Li  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 25052-25060 (2010)
http://dx.doi.org/10.1364/OE.18.025052


View Full Text Article

Enhanced HTML    Acrobat PDF (1193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We studied the surface plasmon resonance properties of transverse electric (TE) wave in a μ-negative (MNG) material/dielectric /μ-negative (MNG) material waveguide with a finite length which works as a subwavelength cavity. The wavelength of the surface plasmon becomes shorter when decrease the thickness of the dielectric core and decrease the plasma frequency of MNG material. The resonance in this cavity can be understood as a Fabry-Perot resonance caused by the reflection of the TE guided mode at the entrance and the exit surfaces. The electromagnetic fields and power flow are concentrated around the dielectric core at the resonant frequency, the magnetic field is maximized at the dielectric core entrance and exit. When a subwavelength magnetic resonator is put at the core entrance and the resonance frequency is tuned to the plasmon cavity mode, Rabi splitting and Rabi oscillation can appear because of the strong coupling between this resonator and the cavity mode.

© 2010 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: September 17, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: October 29, 2010
Published: November 16, 2010

Citation
Liwei Zhang, Yewen Zhang, Yuhuan Zhao, Jiwei Zhai, and Lixin Li, "Rabi splitting induced by a metamaterial plasmon cavity," Opt. Express 18, 25052-25060 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-25052


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. F. Zhu, D. J. Gauthier, S. E. Morin, Q. L. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64(21), 2499–2502 (1990). [CrossRef] [PubMed]
  2. Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, and C. Sirtori, “Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies,” Phys. Rev. Lett. 102(18), 186402 (2009). [CrossRef] [PubMed]
  3. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004). [CrossRef] [PubMed]
  4. K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009). [CrossRef] [PubMed]
  5. D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B 77(21), 214302 (2008). [CrossRef]
  6. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys. 71(5), 1591–1639 (1999). [CrossRef]
  7. L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 035601 (2008). [CrossRef] [PubMed]
  8. J. P. Xu, L. G. Wang, and Q. Lin, “Normal mode splitting of transmission spectrum for Fabry–Pérot cavity containing metamaterials,” J. Opt. Soc. Am. B 26(12), 50–54 (2009). [CrossRef]
  9. E. Dupont, H. C. Liu, A. J. Spring-Thorpe, W. Lai, and M. Extavour, “Vacuum-field Rabi splitting in quantum-well infrared photodetectors,” Phys. Rev. B 68(24), 245320 (2003). [CrossRef]
  10. J. T. Shen and S. H. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95(21), 213001 (2005). [CrossRef] [PubMed]
  11. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003). [CrossRef] [PubMed]
  12. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  13. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  14. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  15. S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402 (2005). [CrossRef] [PubMed]
  16. R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75(12), 125118 (2007). [CrossRef]
  17. L. W. Zhang, Y. W. Zhang, L. He, H. Q. Li, and H. Chen, “Experimental study of photonic crystals consisting of ϵ-negative and μ-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056615 (2006). [CrossRef]
  18. C. Caloz, and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley & Sons, New York, 2006).
  19. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003). [CrossRef]
  20. L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields,” Phys. Rev. Lett. 94(24), 243905 (2005). [CrossRef]
  21. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  22. Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007). [CrossRef]
  23. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006). [CrossRef]
  24. R. Ruppin, “Surface polaritons of a left-handed material slab,” J. Phys. Condens. Matter 13(9), 1811–1818 (2001). [CrossRef]
  25. K. Park, B. J. Lee, C. J. Fu, and Z. M. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005). [CrossRef]
  26. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8(7), 386–388 (1983). [CrossRef] [PubMed]
  27. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  28. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007). [CrossRef]
  29. M. Mojahedi, K. J. Malloy, G. V. Eleftheriades, J. Woodley, and R. Y. Chiao, “Abnormal wave propagation in passive media,” IEEE J. Sel. Top. Quantum Electron. 9(1), 30–39 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited