OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25158–25169

Compact, high-speed variable-focus liquid lens using acoustic radiation force

Daisuke Koyama, Ryoichi Isago, and Kentaro Nakamura  »View Author Affiliations


Optics Express, Vol. 18, Issue 24, pp. 25158-25169 (2010)
http://dx.doi.org/10.1364/OE.18.025158


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact, high-speed variable-focus liquid lens using acoustic radiation force is proposed. The lens consists of an annular piezoelectric ultrasound transducer and an aluminum cell (height: 3 mm; diameter: 6 mm) filled with degassed water and silicone oil. The profile of the oil-water interface can be rapidly varied by applying acoustic radiation force from the transducer, allowing the liquid lens to be operated as a variable-focus lens. A theoretical model based on a spring-mass-dashpot model is proposed for the vibration of the lens. The sound pressure distribution in the lens was calculated by finite element analysis and it suggests that an acoustic standing wave is generated in the lens. The fastest response time of 6.7 ms was obtained with silicone oil with a kinematic viscosity of 100 cSt.

© 2010 OSA

OCIS Codes
(080.3620) Geometric optics : Lens system design
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(050.1965) Diffraction and gratings : Diffractive lenses
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 7, 2010
Revised Manuscript: October 8, 2010
Manuscript Accepted: October 15, 2010
Published: November 17, 2010

Citation
Daisuke Koyama, Ryoichi Isago, and Kentaro Nakamura, "Compact, high-speed variable-focus liquid lens using acoustic radiation force," Opt. Express 18, 25158-25169 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-24-25158


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Mizoguchi, H. Oku, and M. Ishikawa, “High-speed variable-focus optical system for extended depth of field,” Proc. IEEE International Symposium on Industrial Electronics 2009, 1668–1673 (2009).
  2. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]
  3. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004). [CrossRef]
  4. C. A. López, C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87, 134102 (2005). [CrossRef]
  5. H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005). [CrossRef]
  6. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006). [CrossRef] [PubMed]
  7. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008). [CrossRef]
  8. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009). [CrossRef]
  9. D. Koyama, R. Isago, and K. Nakamura, “Liquid lens using an acoustic radiation force,” Proc. 2010 IEEE International Ultrasonics Symposium, (to be published).
  10. Z. A. Gol’dberg, “Acoustic radiation pressure,” in High-Intensity Ultrasonic Field. L. D. Rozenburg, ed. (Plenum Press, New York, 1971).
  11. B. Chu and E. Apfel, “Acoustic radiation pressure produced by a beam of sound,” J. Acoust. Soc. Am. 72(6), 1673–1687 (1982). [CrossRef]
  12. D. Koyama and K. Nakamura, “Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(5), 1152–1159 (2010). [CrossRef] [PubMed]
  13. D. Koyama and K. Nakamura, “Noncontact ultrasonic transportation of small objects in a circular trajectory in air by flexural vibrations of a circular disc,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1434–1442 (2010). [CrossRef] [PubMed]
  14. D. Koyama and K. Nakamura, “Noncontact self-running ultrasonically levitated two-dimensional stage using flexural standing waves,” Jpn. J. Appl. Phys. 48(7), 07GM07 (2009). [CrossRef]
  15. Y. Yamayoshi, H. Tamura, and S. Hirose, “Optimum design for noncontact ultrasonic motor with flexurally vibrating disk using an equivalent circuit considering viscosity of air,” Jpn. J. Appl. Phys. 48(7), 07GM08 (2009). [CrossRef]
  16. G. Hertz and H. Mende, “Der Schallstrahlungsdruck in Flüssigkeiten,” Z. Phys. 114(5-6), 354–367 (1939). [CrossRef]
  17. L. D. Rozenberg and L. O. Makarov, “On the causes of ultrasonic distension of liquid surfaces,” Sov. Phys. Dokl. 2, 230–231 (1958).
  18. M. H. Li and H. S. Fogler, “Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium,” J. Fluid Mech. 88(03), 513–528 (1978). [CrossRef]
  19. K. Sakai and Y. Yamamoto, “Electric field tweezers for characterization of liquid surface,” Appl. Phys. Lett. 89(21), 211911 (2006). [CrossRef]
  20. M. Strani and F. Sabetta, “Free vibration of a drop in partial contact with a solid support,” J. Fluid Mech. 141(-1), 233–247 (1984). [CrossRef]
  21. Y. Watanabe, “Free vibrations of a drop partial contact with a circular support,” Jpn. J. Appl. Phys. 27(Part 1, No. 12), 2409–2413 (1988). [CrossRef]
  22. K. Miyamoto, S. Nagatomo, Y. Matsui, and S. Shiokawa, “Nonlinear vibration of liquid droplet by surface acoustic wave excitation,” Jpn. J. Appl. Phys. 41(Part 1, No. 5B), 3465–3468 (2002). [CrossRef]
  23. H. Takei, T. Hasegawa, K. Nakamura, and S. Ueha, “Measurement of intense ultraousound field in air using fiber optic probe,” Jpn. J. Appl. Phys. 46(No. 7B), 4555–4557 (2007). [CrossRef]
  24. Y. Wada, D. Koyama, and K. Nakamura, “Finite element analysis of acoustic streaming in an ultrasonic air pump,” Jpn. J. Appl. Phys. 49(7), 07HE15 (2010). [CrossRef]
  25. Y. Yamayoshi, J. Shiina, H. Tamura, and S. Hirose, “Sound field characteristics in air gaps of noncontact ultrasonic motor driven by two flexural standing wave vibration disks,” Jpn. J. Appl. Phys. 49(7), 07HE16 (2010). [CrossRef]
  26. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  27. Y. Yoshitake, S. Mitani, K. Sakai, and K. Takagi, “Measurement of high viscosity with laser induced surface deformation technique,” J. Appl. Phys. 97(2), 024901 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited