OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25250–25255

Highly-efficient aperture array terahertz band-pass filtering

Dmitry S. Bulgarevich, Makoto Watanabe, and Mitsuharu Shiwa  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25250-25255 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The array of pointed-shape apertures microfabricated in thin-film aluminum on a thick silicon substrate was designed to maximize the transmission efficiency at desired frequency. The resulted characteristics were over 100% optical transmission (relative to substrate) at narrow band-pass resonance and polarization-independent transmission strength and band-pass shape on filter rotation angle.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(120.2440) Instrumentation, measurement, and metrology : Filters
(220.4000) Optical design and fabrication : Microstructure fabrication
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Diffraction and Gratings

Original Manuscript: October 12, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: November 9, 2010
Published: November 18, 2010

Dmitry S. Bulgarevich, Makoto Watanabe, and Mitsuharu Shiwa, "Highly-efficient aperture array terahertz band-pass filtering," Opt. Express 18, 25250-25255 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. J. G. Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68(20), 201306 (2003). [CrossRef]
  3. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43(1), 1–18 (2008) (and references therein). [CrossRef]
  4. D. Dragoman and M. Dragoman, “Plasmonics: Applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32(1), 1–41 (2008) (and references therein). [CrossRef]
  5. F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Express 15(22), 14804–14809 (2007). [CrossRef] [PubMed]
  6. X. Wang, Y. Cui, D. Hu, W. Sun, J. S. Ye, and Y. Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Commun. 282(24), 4683–4687 (2009). [CrossRef]
  7. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005). [CrossRef] [PubMed]
  8. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006). [CrossRef] [PubMed]
  9. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009). [CrossRef]
  10. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475(1-3), 132–134 (2009). [CrossRef]
  11. F. Miyamaru, Y. Sasagawa, and M. W. Takeda, “Effect of dielectric thin films on reflection properties of metal hole arrays,” Appl. Phys. Lett. 96(2), 021106 (2010). [CrossRef]
  12. H. Cao and A. Nahata, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12(16), 3664–3672 (2004). [CrossRef] [PubMed]
  13. M. Akazawa, Y. Yamazaki, and E. Sano, “Terahertz transmission property of a thin metal hole-array filter,” Jpn. J. Appl. Phys. 44(49), L1481–L1483 (2005). [CrossRef]
  14. E. Kato, K. Suizu, and K. Kawase, “Strong resonance and terahertz wave transmission enhancement of low-porosity metal hole array with bow-tie-shaped apertures,” Appl. Phys. Express 2(12), 122302 (2009). [CrossRef]
  15. D. S. Bulgarevich, M. Watanabe, and M. Shiwa, Japan Patent Pending 09-MS-145 (2010).
  16. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003). [CrossRef]
  17. T. H. Isaac, W. L. Barnes, and E. Hendry, “Surface-mode lifetime and the terahertz transmission of subwavelength hole arrays,” Phys. Rev. 80(11), 115423 (2009). [CrossRef]
  18. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  19. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  20. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71(23), 235117 (2005). [CrossRef]
  21. C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. A 22(5), 998–1002 (2005). [CrossRef]
  22. J. I. Gersten, “The effect of surface roughness on surface enhanced Raman scattering,” J. Chem. Phys. 72(10), 5779–5780 (1980). [CrossRef]
  23. J. I. Gersten, “Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces,” J. Chem. Phys. 72(10), 5780–5781 (1980). [CrossRef]
  24. H. Liang, S. Ruan, M. Zhang, and H. Su, “Nanofocusing of terahertz wave on conical metal wire waveguides,” Opt. Commun. 283(2), 262–264 (2010). [CrossRef]
  25. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006). [CrossRef] [PubMed]
  26. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003). [CrossRef]
  27. J. Bravo-Abad, L. Martín-Moreno, F. J. García-Vidal, E. Hendry, and J. Gómez Rivas, “Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,” Phys. Rev. B 76(24), 241102 (2007). [CrossRef]
  28. T. Tanaka, M. Akazawa, and E. Sano, “Terahertz wave filter from cascaded thin-metal-film meshes with a triangular array of hexagonal holes,” Jpn. J. Appl. Phys. 43(No. 2B), L287–L289 (2004). [CrossRef]
  29. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17(21), 18590–18595 (2009). [CrossRef]
  30. J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q.-H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102 (2009). [CrossRef]
  31. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006). [CrossRef]
  32. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006). [CrossRef]
  33. S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010). [CrossRef] [PubMed]
  34. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett. 28(20), 1906–1908 (2003). [CrossRef] [PubMed]
  35. D. Qu and D. Grischkowsky, “Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays,” Phys. Rev. Lett. 93(19), 196804 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited