OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 24 — Nov. 22, 2010
  • pp: 25389–25402

Experimental and theoretical determination of optical binding forces

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek  »View Author Affiliations

Optics Express, Vol. 18, Issue 24, pp. 25389-25402 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1710 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental and theoretical study of long distance optical binding effects acting upon micro-particles placed in a standing wave optical field. In particular we present for the first time quantitatively the binding forces between individual particles for varying inter-particle separations, polarizations and incident angles of the binding beam. Our quantitative experimental data and numerical simulations show that these effects are essentially enhanced due to the presence of a reflective surface in a sample chamber. They also reveal conditions to form stable optically bound clusters of two and three particles in this geometry. We also show that the inter-particle separation in the formed clusters can be controlled by altering the angle of the beam incident upon the sample plane. This demonstrates new perspectives for the generation and control of optically bound soft matter and may be useful to understand various inter-particle effects in the presence of reflective surfaces.

© 2010 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 4, 2010
Revised Manuscript: November 8, 2010
Manuscript Accepted: November 8, 2010
Published: November 19, 2010

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, "Experimental and theoretical determination of optical binding forces," Opt. Express 18, 25389-25402 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical Binding,” Phys. Rev. Lett. 63, 1233–1236 (1989). [CrossRef] [PubMed]
  2. K. Dholakia, and P. Zemánek, “Gripped by light: Optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010). [CrossRef]
  3. T. Čižmár, L. C. D. Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, (2010). [CrossRef]
  4. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical Matter: Crystallization and Binding in Intense Optical Fields,” Science 249, 749 (1990). [CrossRef] [PubMed]
  5. F. Depasse, and J. M. Vigoureux, “Optical binding force between two Rayleigh particles,” J. Phys. D Appl. Phys. 27, 914–919 (1994). [CrossRef]
  6. P. C. Chaumet, and M. Nieto-Vesperinas, “Optical binding of particles with or without the presence of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001). [CrossRef]
  7. N. Nieto-Vesperinas, P. C. Chaumet, and R. Rahmani, “Near- field Photonic Forces,” Philos. Trans. R. Soc. Lond. A 362, 719 (2004). [CrossRef]
  8. S. K. Mohanty, J. T. Andrews, and P. K. Gupta, “Optical binding between dielectric particles,” Opt. Express 12, 2749–2756 (2004). [CrossRef]
  9. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, “Photonic clusters formed by dielectric microspheres: Numerical simulations,” Phys. Rev. B 72, 085130 (2005). [CrossRef]
  10. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, “Enhanced optical forces between coupled resonant metal nanoparticles,” Opt. Lett. 32, 1156–1158 (2007). [CrossRef] [PubMed]
  11. L. C. D. Romero, J. Rodriguez, and D. L. Andrews, “Electrodynamic mechanism and array stability in optical binding,” Opt. Commun. 281, 865–870 (2008). [CrossRef]
  12. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20, 1568–1574 (2003). [CrossRef]
  13. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-Dimensional Optically Bound Arrays of Microscopic Particles,” Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  14. D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, “Optically bound microscopic particles in one dimension,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 021403 (2004). [CrossRef]
  15. R. Gómez-Medina, and J. J. Sáenz, “Usually strong optical interaction between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004). [CrossRef]
  16. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004). [CrossRef]
  17. J. Ng, and C. T. Chan, “Localized vibrational modes in optically bound structures,” Opt. Lett. 31, 2583–2585 (2006). [CrossRef] [PubMed]
  18. N. K. Metzger, K. Dholakia, and E. M. Wright, “Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres,” Phys. Rev. Lett. 96, 068102 (2006). [CrossRef] [PubMed]
  19. V. Karásek, K. Dholakia, and P. Zemánek, “Analysis of optical binding in one dimension,” Appl. Phys. B 84, 149–156 (2006). [CrossRef]
  20. N. K. Metzger, E. M. Wright, and K. Dholakia, “Theory and simulation of the bistable behavior of optically bound particles in the Mie size regime,” N. J. Phys. 8, 139 (2006). [CrossRef]
  21. M. Guillon, O. Moine, and B. Stout, “Longitudinal optical binding of high optical contrast microdroplets in air,” Phys. Rev. Lett. 96, 143902 (2006). [CrossRef] [PubMed]
  22. N. K. Metzger, R. F. Marchington, M. Mazilu, R. L. Smith, K. Dholakia, and E. M. Wright, “Measurement of the Restoring Forces Acting on Two Optically Bound Particles from Normal Mode Correlations,” Phys. Rev. Lett. 98, 068102 (2007). [CrossRef] [PubMed]
  23. V. Karásek, and P. Zemánek, “Analytical description of longitudinal optical binding of two spherical nanoparticles,” J. Opt. A, Pure Appl. Opt. 9, S215–S220 (2007). [CrossRef]
  24. V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range onedimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 14 (2008). [CrossRef]
  25. D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fibre trap for microscopic particles,” Appl. Phys. Lett. 93, 041110 (2008). [CrossRef]
  26. J. M. Taylor, L. Y. Wong, C. D. Bain, and G. D. Love, “Emergent properties in optically bound matter,” Opt. Express 16, 6921–6928 (2008). [CrossRef] [PubMed]
  27. V. Karásek, O. Brzobohatý, and P. Zemánek, “Longitudinal optical binding of several spherical particles studied by the coupled dipole method,” J. Opt. A, Pure Appl. Opt. 11, 034009 (2009). [CrossRef]
  28. J. M. Taylor, and G. D. Love, “Optical binding mechanisms: a conceptual model for Gaussian beam traps,” Opt. Express 17, 15381–15389 (2009). [CrossRef] [PubMed]
  29. J. M. Taylor, and G. D. Love, “Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations,” J. Opt. Soc. Am. A 26, 278–282 (2009). [CrossRef]
  30. W. M. Lee, R. El-Ganainy, D. N. Christodoulides, K. Dholakia, and E. M. Wright, “Nonlinear optical response of colloidal suspensions,” Opt. Express 17, 10277–10289 (2009). [CrossRef] [PubMed]
  31. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002). [CrossRef] [PubMed]
  32. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticles on a surface,” Appl. Phys. Lett. 86, 031106 (2005). [CrossRef]
  33. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B 73, 085417 (2006). [CrossRef]
  34. M. Šerý, M. Šiler, T. Čižmár, P. Jákl, and P. Zemánek, “Sub-micron particle delivery using evanescent field,” in Laser and Applications: Proceedings of SPIE, K. M. Abramski, A. Lapucci, and E. P. Plinski, eds., vol. 5958, pp. 5958OL 1–5 (2005).
  35. M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006). [CrossRef]
  36. C. D. Mellor, and C. D. Bain, “Array formation in evanescent waves,” ChemPhysChem 7, 329–332 (2006). [CrossRef]
  37. C. D. Mellor, T. A. Fennerty, and C. D. Bain, “Polarization effects in optically bound particle arrays,” Opt. Express 14, 10079–10088 (2006). [CrossRef] [PubMed]
  38. P. J. Reece, E. M. Wright, and K. Dholakia, “Experimental Observation of Modulation Instability and Optical Spatial Soliton Arrays in Soft Condensed Matter,” Phys. Rev. Lett. 98, 203902 (2007). [CrossRef] [PubMed]
  39. E. M. Purcell, and C. R. Pennypacker, “Scattering and absorption of ligh by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
  40. B. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
  41. P. C. Chaumet, and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B 61, 14119–14127 (2000). [CrossRef]
  42. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discretedipole approximation,” Opt. Lett. 16, 1198–1200 (1991). [CrossRef] [PubMed]
  43. M. A. Yurkin, and A. G. Hoekstra, “The discrete dipole approximation: An overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007). [CrossRef]
  44. P. C. Chaumet, and C. Billaudeau, “Coupled dipole method to compute optical torque: Application to a micropropeller,” J. Appl. Phys. 101, 023106 (2007). [CrossRef]
  45. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, “Radiation forces in the discrete-dipole approximation,” J. Opt. Soc. Am. A 18, 1944–1953 (2001). [CrossRef]
  46. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometerresolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076 (1996). [CrossRef]
  47. K. Svoboda, and S. M. Block, “Biological applications of optical tweezers,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited