OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25556–25566

Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling

Thomas Grujic, Boris T. Kuhlmey, Alexander Argyros, Stéphane Coen, and C. Martijn de Sterke  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 25556-25566 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1845 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate solid-core photonic crystal fibers that guide via the inhibited coupling mechanism. We measure an overall transmission window of more than an octave, as well as an uninterrupted width of almost one octave. The fiber is fabricated in polymer, with high-index ring-shaped inclusions. This type of fiber was conceived based on a simple model which shows that the cutoffs of the modes of a thin ring cluster around the cutoffs of planar waveguide modes. The model shows that such ring based fibers are closely related to kagome and square lattice hollow core fibers, and have transmission bandwidths that could in principle reach 1.6 octaves. Measured transmission properties are in good agreement with rigorous modelling.

© 2010 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 10, 2010
Revised Manuscript: November 11, 2010
Manuscript Accepted: November 16, 2010
Published: November 22, 2010

Thomas Grujic, Boris T. Kuhlmey, Alexander Argyros, Stéphane Coen, and C. Martijn de Sterke, "Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling," Opt. Express 18, 25556-25566 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, “Photonic crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  2. S. A. Cerqueira, Jr., C. M. B. Cordeiro, F. Biancalana, P. J. Roberts, H. E. Hernandez-Figueroa, and C. H. B. Cruz, “Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber,” Opt. Lett. 33, 2080–2082 (2008). [CrossRef]
  3. V. Pureur, and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35, 2813–2815 (2010). [CrossRef] [PubMed]
  4. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002). [CrossRef]
  5. N. M. Litchinitser, S. Dunn, B. Usner, B. J. Eggleton, T. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003). [CrossRef] [PubMed]
  6. . T. D. Hedley, D. M. Bird, F. Benabid, J. C. Knight, and P. St. J. Russell, “Modelling of a novel hollow-core photonic crystal fiber,” CLEO 2003, paper QTuL4.
  7. A. Argyros, and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007). [CrossRef] [PubMed]
  8. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multioctave optical-frequency combs,” Science 318, 1118–1121 (2007). [CrossRef] [PubMed]
  9. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagomestructured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007). [CrossRef] [PubMed]
  10. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollowcore square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008). [CrossRef] [PubMed]
  11. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in a hollowcore photonic crystal fiber cladding,” Opt. Express 15, 325–338 (2007). [CrossRef] [PubMed]
  12. F. Poletti, “Hollow core fiber with an octave spanning bandgap,” Opt. Lett. 35, 2837–2839 (2010). [CrossRef] [PubMed]
  13. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13, 309–314 (2005). [CrossRef] [PubMed]
  14. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005). [CrossRef] [PubMed]
  15. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14, 6291–6296 (2006). [CrossRef] [PubMed]
  16. A. Wang, G. J. Pearce, F. Luan, D. M. Bird, T. A. Birks, and J. C. Knight, “All solid photonic bandgap fiber based on an array of oriented rectangular high index rods,” Opt. Express 14, 10844–10850 (2006). [CrossRef] [PubMed]
  17. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002). [CrossRef] [PubMed]
  18. . Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low-loss broadband transmission in optimized core-shaped Kagome hollow-core PCF,” CLEO 2010, postdeadline paper CPDB4.
  19. H. Kurt, and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005). [CrossRef] [PubMed]
  20. V. Poborchii, T. Tada, T. Kanayama, and A. Moroz, “Silver-coated silicon pillar photonic crystals: enhancement of a photonic band gap,” Appl. Phys. Lett. 82, 508–510 (2003). [CrossRef]
  21. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27, 1571–1579 (2009). [CrossRef]
  22. J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6, 798–804 (2004). [CrossRef]
  23. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14, 9483–9490 (2006). [CrossRef] [PubMed]
  24. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17, 16306–16321 (2009). [CrossRef] [PubMed]
  25. B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851–10864 (2006). [CrossRef] [PubMed]
  26. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002). [CrossRef]
  27. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002). [CrossRef]
  28. T. Grujic, B. T. Kuhlmey, C. M. de Sterke, and C. G. Poulton, “Modeling of photonic crystal fiber based on layered inclusions,” J. Opt. Soc. Am. B 26, 1852–1861 (2009). [CrossRef]
  29. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides-I: Summary of results,” IEEE Trans. Microw. Theory Tech. 23, 421–429 (1975). [CrossRef]
  30. P. Steinvurzel, C. M. de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14, 8797–8811 (2006). [CrossRef] [PubMed]
  31. A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13, 2977–2987 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited