OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25808–25814

Realization of binary radial diffractive optical elements by two-photon polymerization technique

Vladimir Osipov, Vladimir Pavelyev, Denis Kachalov, Albertas Žukauskas, and Boris Chichkov  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25808-25814 (2010)
http://dx.doi.org/10.1364/OE.18.025808


View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Application of the two-photon polymerization (2PP) technique for the fabrication of submicron-size relief of radial binary diffractive optical elements (DOE’s) is studied. Binary DOE’s for the formation of special longitudinal intensity distribution (axial light segment) are realized. Interferometric investigations of the diffractive relief produced by the 2PP-technique and investigations of optical properties of the formed elements are presented. Results of computer simulations are in good agreement with the experimental observations.

© 2010 OSA

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1970) Diffraction and gratings : Diffractive optics
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 17, 2010
Revised Manuscript: October 20, 2010
Manuscript Accepted: October 21, 2010
Published: November 24, 2010

Citation
Vladimir Osipov, Vladimir Pavelyev, Denis Kachalov, Albertas Žukauskas, and Boris Chichkov, "Realization of binary radial diffractive optical elements by two-photon polymerization technique," Opt. Express 18, 25808-25814 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001). [CrossRef] [PubMed]
  2. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röskel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999). [CrossRef]
  3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997). [CrossRef] [PubMed]
  4. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003). [CrossRef] [PubMed]
  5. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004). [CrossRef] [PubMed]
  6. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007). [CrossRef] [PubMed]
  7. L. L. Doskolovich, D. L. Golovashkin, N. L. Kazanskiy, S. N. Khonina, V. V. Kotlyar, V. S. Pavelyev, R. V. Skidanov, V. A. Soifer, V. S. Solovyev, G. V. Uspleniev, and A. V. Volkov, Methods for Computer Design of Diffractive Optical Elements, Ed. by V. A. Soifer (John Wiley, 2002).
  8. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45(1), 53–62 (2006). [CrossRef] [PubMed]
  9. B. Jia, J. Serbin, H. Kim, B. Lee, J. Li, and M. Gu, “Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements,” Appl. Phys. Lett. 90, 1–3 (2007). [CrossRef]
  10. G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das, F. De Angelis, and E. Di Fabrizio, “Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization,” Microelectron. Eng. 87, 876–879 (2010). [CrossRef]
  11. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010). [CrossRef] [PubMed]
  12. K. Wang, L. Zeng, and Ch. Yin, “Influence of the incident wave-front on intensity distribution of the nondiffracting beam used in large-scale measurement,” Opt. Commun. 216, 99–103 (2003). [CrossRef]
  13. L. Jian-yu and J. F. Greenleaf, “Diffraction-limited beams and their applications for ultrasonic imaging and tissue characterization,” Proc. SPIE 1733, 92–119 (1992). [CrossRef]
  14. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006). [CrossRef] [PubMed]
  15. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008). [CrossRef] [PubMed]
  16. J. Y. Lu and J. F. Greenleaf, “Producing deep depth of field and depth-independent resolution in NDE with limited diffraction beams,” Ultrason. Imaging 15(2), 134–149 (1993). [CrossRef] [PubMed]
  17. J. J. Lunazzi, D. S. F. Magalhães, “Photographing by means of a diffractive axicon,” http://arxiv.org/pdf/physics/0701234 .
  18. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31(31), 6653–6657 (1992). [CrossRef] [PubMed]
  19. M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12(24), 5887–5895 (2004). [CrossRef] [PubMed]
  20. S. Reichelt, H. Tiziani, and H. Zappe, “Self-calibration of wavefront testing interferometers by use of diffractive elements,” Proc. SPIE 6292, 629205.1–629205.10 (2006).
  21. A. L. Cohen, “Practical design of a bifocal hologram contact lens or intraocular lens,” Appl. Opt. 31(19), 3750–3754 (1992). [CrossRef] [PubMed]
  22. D. G. Kachalov, V. S. Pavelyev, S. H. Khonina, R. V. Skidanov, and O. Y. Moiseev, “Stochastic optimization of radial DOE forming intensity distribution along an axial focal zone,” Proc. SPIE 7717, 77170E (2010). [CrossRef]
  23. M. Meister and R. J. Winfield, “Novel approaches to direct search algorithms for the design of diffractive optical elements,” Opt. Commun. 203, 39–49 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited