OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25967–25972

Soft proton exchanged channel waveguides in congruent lithium tantalate for frequency doubling

Alessandro C. Busacca, Salvatore Stivala, Luciano Curcio, Paolo Minzioni, Giovanni Nava, Ilaria Cristiani, and Gaetano Assanto  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 25967-25972 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on stable optical waveguides fabricated by soft-proton exchange in periodically-poled congruent lithium tantalate in the α-phase. The channel waveguides are characterized in the telecom wavelength range in terms of both linear properties and frequency doubling. The measurements yield a nonlinear coefficient of about 9.5pm/V, demonstrating that the nonlinear optical properties of lithium tantalate are left nearly unaltered by the process.

© 2010 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.4320) Optical devices : Nonlinear optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: September 1, 2010
Revised Manuscript: October 21, 2010
Manuscript Accepted: October 21, 2010
Published: November 29, 2010

Alessandro C. Busacca, Salvatore Stivala, Luciano Curcio, Paolo Minzioni, Giovanni Nava, Ilaria Cristiani, and Gaetano Assanto, "Soft proton exchanged channel waveguides in congruent lithium tantalate for frequency doubling," Opt. Express 18, 25967-25972 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992). [CrossRef] [PubMed]
  2. G. Assanto, G. I. Stegeman, M. Sheik-Bahae, and E. VanStryland, “All Optical Switching Devices Based on Large Nonlinear Phase Shifts from Second Harmonic Generation,” Appl. Phys. Lett. 62(12), 1323–1325 (1993). [CrossRef]
  3. G. Assanto, Z. Wang, D. J. Hagan, and E. VanStryland, “All Optical Modulation via Nonlinear Cascading in Type II Second Harmonic Generation,” Appl. Phys. Lett. 67 (15), 2120–2122 (1995). [CrossRef]
  4. G. Assanto, G. I. Stegeman, and R. Schiek, “Thin film devices for all-optical switching and processing via quadratic nonlinearities,” Thin Solid Films 331(1-2), 291–297 (1998). [CrossRef]
  5. A. Buryak, P. Di Trapani, D. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370(2), 63–235 (2002). [CrossRef]
  6. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient Wavelength Shifting Over the Erbium Amplifier Bandwidth Via Cascaded Second Order Processes in Lithium Niobate Waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997). [CrossRef]
  7. I. Cristiani, M. Rini, A. Rampulla, G. P. Banfi, and V. Degiorgio, “Wavelength conversion of an infrared signal through cascaded second-order nonlinearity in a lithium-niobate channel waveguide,” J. Nonlinear Opt. Phys. Mater. 9, 11–20 (2000).
  8. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO/sub 3/ waveguides,” Opt. Lett. 24(16), 1157–1159 (1999). [CrossRef]
  9. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkotter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti : LiNbO/sub 3/ channel waveguides,” IEEE Photon. Technol. Lett. 15(7), 978–980 (2003). [CrossRef]
  10. A. Mecozzi, C. B. Clausen, and M. Shtaif, “System impact of intra-channel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett. 12(12), 1633–1635 (2000). [CrossRef]
  11. P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing,” Opt. Lett. 24(21), 1454–1456 (1999). [CrossRef]
  12. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992). [CrossRef]
  13. D. A. Akimov, M. Schmitt, R. Maksimenka, K. V. Dukel’skii, Y. N. Kondrat’ev, A. V. Khokhlov, V. S. Shevandin, W. Kiefer, and A. M. Zheltikov, “Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes,” Appl. Phys. B 77(2-3), 299–305 (2003). [CrossRef]
  14. G. I. Stegeman, and G. Assanto, “Nonlinear Integrated Optical Devices,” Chap. 11, pp. 381–418 in Integrated Optical Circuits and Components: Design and Application, ed. E. J. Murphy, (M. Dekker, New York, 1999).
  15. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008). [CrossRef]
  16. Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano, “Stoichiometric Mg:LiNbO/sub 3/ as an effective material for nonlinear optics,” Opt. Lett. 23(24), 1892–1894 (1998). [CrossRef]
  17. Y. Kondo and Y. Fujii, “Temperature Dependence of the Photorefractive Effect in Proton-Exchanged Optical Waveguides Formed on Lithium Tantalate Crystals,” Jpn. J. Appl. Phys. 34(Part 2, No. 3B), 365–367 (1995). [CrossRef]
  18. M. Marangoni, M. Lobino, R. Ramponi, E. Cianci, and V. Foglietti, “High quality buried waveguides in stoichiometric LiTaO/sub 3/ for nonlinear frequency conversion,” Opt. Express 14(1), 248–253 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-1-248 . [CrossRef] [PubMed]
  19. V. Rastogi, P. Baldi, I. Aboud, P. Aschieri, M. P. De Micheli, D. B. Ostrowsky, and J. P. Meyn, “Effect of proton exchange on periodically poled ferroelectric domains in lithium tantalate,” Opt. Mater. 15(1), 27–32 (2000). [CrossRef]
  20. P. Baldi, S. Nouh, K. E. Hadi, M. Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Quasi-phase-matched parametric fluorescence in room-temperature lithium tantalate waveguides,” Opt. Lett. 20(13), 1471–1473 (1995). [CrossRef] [PubMed]
  21. K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, V. A. Fedorov, and Y. N. Korkishko, “Control of proton exchange for LiTaO3 waveguides and the crystal structure of H/sub x/Li/sub (1-x)/TaO/sub 3/,” Opt. Lett. 20(16), 1698–1700 (1995). [CrossRef] [PubMed]
  22. A. C. Busacca, E. D’Asaro, S. Riva Sanseverino, and G. Assanto, “Stable Proton Exchanged Waveguides in Lithium Tantalate,” IEEE Photon. Technol. Lett. 20(24), 2126–2128 (2008). [CrossRef]
  23. A. Parisi, A. C. Cino, A. C. Busacca, and S. Riva-Sanseverino, “Nonstoichiometric silica mask for fabricating reverse proton-exchanged waveguides in lithium niobate crystals,” Appl. Opt. 43(4), 940–943 (2004). [CrossRef] [PubMed]
  24. M. de Micheli, D. B. Ostrowsky, J. P. Barety, C. Canali, A. Carnera, G. Mazzi, and M. Papuchon, “Crystalline and optical quality of proton exchanged waveguides,” J. Lightwave Technol. 4(7), 743–745 (1986). [CrossRef]
  25. I. Cristiani, C. Liberale, V. Degiorgio, G. Tartarini, and P. Bassi, “Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion,” Opt. Commun. 187(1-3), 263–270 (2001). [CrossRef]
  26. S. Stivala, A. Pasquazi, L. Colace, G. Assanto, A. C. Busacca, M. Cherchi, S. Riva-Sanseverino, A. C. Cino, and A. Parisi, “Guided-wave frequency doubling in surface periodically poled lithium niobate: competing effects,” J. Opt. Soc. Am. B 24(7), 1564–1570 (2007). [CrossRef]
  27. A. C. Busacca, E. D'Asaro, A. Pasquazi, S. Stivala, and G. Assanto, “Ultraviolet generation in periodically poled lithium tantalate waveguides,” Appl. Phys. Lett. 93(12), 121117 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited