OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25973–25986

Quantification of functional near infrared
spectroscopy to assess cortical reorganization 
in children with cerebral palsy

Fenghua Tian, Mauricio R. Delgado, Sameer C. Dhamne, Bilal Khan, George Alexandrakis, Mario I. Romero, Linsley Smith, Dahlia Reid, Nancy J. Clegg, and Hanli Liu  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25973-25986 (2010)
http://dx.doi.org/10.1364/OE.18.025973


View Full Text Article

Acrobat PDF (1316 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cerebral palsy (CP) is the most common motor disorder in children. Currently available neuroimaging techniques require complete body confinement and steadiness and thus are extremely difficult for pediatric patients. Here, we report the use and quantification of functional near infrared spectroscopy (fNIRS) to investigate the functional reorganization of the sensorimotor cortex in children with hemiparetic CP. Ten of sixteen children with congenital hemiparesis were measured during finger tapping tasks and compared with eight of sixteen age-matched healthy children, with an overall measurement success rate of 60%. Spatiotemporal analysis was introduced to quantify the motor activation and brain laterality. Such a quantitative approach reveals a consistent, contralateral motor activation in healthy children at 7 years of age or older. In sharp contrast, children with congenital hemiparesis exhibit all three of contralateral, bilateral and ipsilateral motor activations, depending on specific ages of the pediatric subjects. This study clearly demonstrates the feasibility of fNIRS to be utilized for investigating cortical reorganization in children with CP or other cortical disorders.

© 2010 OSA

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.6960) Medical optics and biotechnology : Tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 23, 2010
Revised Manuscript: September 23, 2010
Manuscript Accepted: November 16, 2010
Published: November 30, 2010

Citation
Fenghua Tian, Mauricio R. Delgado, Sameer C. Dhamne, Bilal Khan, George Alexandrakis, Mario I. Romero, Linsley Smith, Dahlia Reid, Nancy J. Clegg, and Hanli Liu, "Quantification of functional near infrared
spectroscopy to assess cortical reorganization 
in children with cerebral palsy," Opt. Express 18, 25973-25986 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25973


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Bax, M. Goldstein, P. Rosenbaum, A. Leviton, N. Paneth, B. Dan, B. Jacobsson, D. Damiano, and Executive Committee for the Definition of Cerebral Palsy, “Proposed definition and classification of cerebral palsy, April 2005,” Dev. Med. Child Neurol. 47(8), 571–576 (2005). [CrossRef] [PubMed]
  2. M. V. Johnston and A. H. Hoon., “Cerebral palsy,” Neuromolecular Med. 8(4), 435–450 (2006). [CrossRef] [PubMed]
  3. I. Krägeloh-Mann and C. Cans, “Cerebral palsy update,” Brain Dev. 31(7), 537–544 (2009). [CrossRef] [PubMed]
  4. B. Hagberg, G. Hagberg, E. Beckung, and P. Uvebrant, “Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94,” Acta Paediatr. 90(3), 271–277 (2001). [CrossRef] [PubMed]
  5. S. A. Back, “Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms,” Ment. Retard. Dev. Disabil. Res. Rev. 12(2), 129–140 (2006). [CrossRef] [PubMed]
  6. S. F. Farmer, L. M. Harrison, D. A. Ingram, and J. A. Stephens, “Plasticity of central motor pathways in children with hemiplegic cerebral palsy,” Neurology 41(9), 1505–1510 (1991). [PubMed]
  7. L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain 116(5), 1223–1247 (1993). [CrossRef] [PubMed]
  8. J. Accardo, H. Kammann, and A. H. Hoon., “Neuroimaging in cerebral palsy,” J. Pediatr. 145(2Suppl), S19–S27 (2004). [CrossRef] [PubMed]
  9. A. M. S. G. Piovesana, M. V. L. Moura-Ribeiro, V. A. Zanardi, and V. M. G. Gonçalves, “Hemiparetic cerebral palsy: etiological risk factors and neuroimaging,” Arq. Neuropsiquiatr. 59(1), 29–34 (2001). [CrossRef] [PubMed]
  10. S. J. Korzeniewski, G. Birbeck, M. C. DeLano, M. J. Potchen, and N. Paneth, “A systematic review of neuroimaging for cerebral palsy,” J. Child Neurol. 23(2), 216–227 (2007). [CrossRef] [PubMed]
  11. A. Sööt, T. Tomberg, P. Kool, R. Rein, and T. Talvik, “Magnetic resonance imaging in children with bilateral spastic forms of cerebral palsy,” Pediatr. Neurol. 38(5), 321–328 (2008). [CrossRef] [PubMed]
  12. Y. Vandermeeren, G. Sébire, C. B. Grandin, J. L. Thonnard, X. Schlögel, and A. G. De Volder, “Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study,” Neuroimage 20(1), 289–301 (2003). [CrossRef] [PubMed]
  13. S. H. You, S. H. Jang, Y. H. Kim, Y. H. Kwon, I. Barrow, and M. Hallett, “Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy,” Dev. Med. Child Neurol. 47(9), 628–635 (2005). [CrossRef] [PubMed]
  14. R. Trivedi, R. K. Gupta, V. Shah, M. Tripathi, R. K. S. Rathore, M. Kumar, C. M. Pandey, and P. A. Narayana, “Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study,” Pediatr. Neurol. 39(5), 341–349 (2008). [CrossRef] [PubMed]
  15. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997). [CrossRef] [PubMed]
  16. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(1Suppl 1), S275–S288 (2004). [CrossRef] [PubMed]
  17. F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007). [CrossRef] [PubMed]
  18. B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt. 15(3), 036008 (2010). [CrossRef] [PubMed]
  19. A. C. Eliasson, L. Krumlinde-Sundholm, B. Rösblad, E. Beckung, M. Arner, A. M. Ohrvall, and P. Rosenbaum, “The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability,” Dev. Med. Child Neurol. 48(7), 549–554 (2006). [CrossRef] [PubMed]
  20. C. Morris, J. J. Kurinczuk, R. Fitzpatrick, and P. L. Rosenbaum, “Reliability of the manual ability classification system for children with cerebral palsy,” Dev. Med. Child Neurol. 48(12), 950–953 (2006). [CrossRef] [PubMed]
  21. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, “Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29(13), 1506–1508 (2004). [CrossRef] [PubMed]
  22. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009). [CrossRef] [PubMed]
  23. M. Cope, D. T. Delpy, E. O. Reynolds, S. Wray, J. Wyatt, and P. van der Zee, “Methods of quantitating cerebral near infrared spectroscopy data,” Adv. Exp. Med. Biol. 222, 183–189 (1988). [PubMed]
  24. L. Kocsis, P. Herman, and A. Eke, “The modified Beer-Lambert law revisited,” Phys. Med. Biol. 51(5), N91–N98 (2006). [CrossRef] [PubMed]
  25. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999). [CrossRef]
  26. S. A. Walker, S. Fantini, and E. Gratton, “Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media,” Appl. Opt. 36(1), 170–174 (1997). [CrossRef] [PubMed]
  27. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006). [CrossRef] [PubMed]
  28. E. R. Hom, http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm .
  29. G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003). [CrossRef] [PubMed]
  30. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage 29(2), 368–382 (2006). [CrossRef] [PubMed]
  31. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003). [CrossRef] [PubMed]
  32. A. Solodkin, P. Hlustik, D. C. Noll, and S. L. Small, “Lateralization of motor circuits and handedness during finger movements,” Eur. J. Neurol. 8(5), 425–434 (2001). [CrossRef] [PubMed]
  33. M. M. Plichta, M. J. Herrmann, C. G. Baehne, A. C. Ehlis, M. M. Richter, P. Pauli, and A. J. Fallgatter, “Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?” Neuroimage 31(1), 116–124 (2006). [CrossRef] [PubMed]
  34. T. Kono, K. Matsuo, K. Tsunashima, K. Kasai, R. Takizawa, M. A. Rogers, H. Yamasue, T. Yano, Y. Taketani, and N. Kato, “Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men,” Neurosci. Res. 57(4), 504–512 (2007). [CrossRef] [PubMed]
  35. B. Khan, F. Tian, M. I. Romero, H. Liu, G. Alexandrakis, L. Smith, N. J. Clegg, M. R. Delgado, C. Wildey, and D. L. MacFarlane, “Functional near infrared brain imaging with a brush-fiber optode array to improve study success rates on pediatric subjects with cerebral palsy,” submitted to SPIE Photonics West (2010).
  36. F. Tian, G. Alexandrakis, and H. Liu, “Optimization of probe geometry for diffuse optical brain imaging based on measurement density and distribution,” Appl. Opt. 48(13), 2496–2504 (2009). [CrossRef] [PubMed]
  37. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007). [CrossRef] [PubMed]
  38. B. R. White, A. Z. Snyder, A. L. Cohen, S. E. Petersen, M. E. Raichle, B. L. Schlaggar, and J. P. Culver, “Resting-state functional connectivity in the human brain revealed with diffuse optical tomography,” Neuroimage 47(1), 148–156 (2009). [CrossRef] [PubMed]
  39. C. M. Lu, Y. J. Zhang, B. B. Biswal, Y. F. Zang, D. L. Peng, and C. Z. Zhu, “Use of fNIRS to assess resting state functional connectivity,” J. Neurosci. Methods 186(2), 242–249 (2010). [CrossRef] [PubMed]
  40. M. Staudt, W. Grodd, C. Gerloff, M. Erb, J. Stitz, and I. Krägeloh-Mann, “Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study,” Brain 125(10), 2222–2237 (2002). [CrossRef] [PubMed]
  41. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering for global interference cancellation and real-time recovery of evoked brain activity: a Monte Carlo simulation study,” J. Biomed. Opt. 12(4), 044014 (2007). [CrossRef] [PubMed]
  42. Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009). [CrossRef] [PubMed]
  43. F. Tian, B. Chance, and H. Liu, “Investigation of the prefrontal cortex in response to duration-variable anagram tasks using functional near-infrared spectroscopy,” J. Biomed. Opt. 14(5), 054016 (2009). [CrossRef] [PubMed]
  44. F. Tian, V. Sharma, F. A. Kozel, and H. Liu, “Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex,” Brain Res. 1303, 120–130 (2009). [CrossRef] [PubMed]
  45. I. Tachtsidis, T. S. Leung, M. M. Tisdall, P. Devendra, M. Smith, D. T. Delpy, and C. E. Elwell, “Investigation of frontal cortex, motor cortex and systemic haemodynamic changes during anagram solving,” Adv. Exp. Med. Biol. 614, 21–28 (2008). [CrossRef] [PubMed]
  46. I. Tachtsidis, T. S. Leung, L. Devoto, D. T. Delpy, and C. E. Elwell, “Measurement of frontal lobe functional activation and related systemic effects: a near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 397–403 (2008). [CrossRef] [PubMed]
  47. I. Tachtsidis, T. S. Leung, A. Chopra, P. H. Koh, C. B. Reid, and C. E. Elwell, “False positives in functional near-infrared topography,” Adv. Exp. Med. Biol. 645, 307–314 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited