OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26123–26140

Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser

Gerard Wysocki and Damien Weidmann  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26123-26140 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A spectroscopic method of molecular detection based on dispersion measurements using a frequency-chirped laser source is presented. An infrared quantum cascade laser emitting around 1912 cm−1 is used as a tunable spectroscopic source to measure dispersion that occurs in the vicinity of molecular ro-vibrational transitions. The sample under study is a mixture of nitric oxide in dry nitrogen. Two experimental configurations based on a coherent detection scheme are investigated and discussed. The theoretical models, which describe the observed spectral signals, are developed and verified experimentally. The method is particularly relevant to optical sensing based on mid-infrared quantum cascade lasers as the high chirp rates available with those sources can significantly enhance the magnitude of the measured dispersion signals. The method relies on heterodyne beatnote frequency measurements and shows high immunity to variations in the optical power received by the photodetector.

© 2010 OSA

OCIS Codes
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6390) Spectroscopy : Spectroscopy, molecular
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:

Original Manuscript: October 11, 2010
Revised Manuscript: November 25, 2010
Manuscript Accepted: November 25, 2010
Published: November 30, 2010

Gerard Wysocki and Damien Weidmann, "Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser," Opt. Express 18, 26123-26140 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Richter, A. Fried, and P. Weibring, “Difference frequency generation laser based spectrometers,” Laser Photon. Rev. 3(4), 343–354 (2009). [CrossRef]
  2. M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, “Ultra-sensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy,” Appl. Phys. B 77(4), 381–385 (2003). [CrossRef]
  3. R. W. Wood, “The Anomalous Dispersion of Sodium Vapour,” Proc. R. Soc. Lond. 69(451-458), 157–171 (1901). [CrossRef]
  4. D. Roschdestwensky, “Anomale Dispersion im Natriumdampf,” Ann. Phys. 344(12), 307–345 (1912). [CrossRef]
  5. M. Shurgalin, W. H. Parkinson, K. Yoshino, C. Schoene, and W. P. Lapatovich, “Precision measurements of sodium-sodium and sodium-noble gas molecular absorption,” Meas. Sci. Technol. 11(6), 730–737 (2000). [CrossRef]
  6. V. Hasson, A. J. D. Farmer, and R. W. Nicholls, “Application of dispersion techniques to molecular band intensity measurements: I. Principles of ‘fringe shift’ and ‘fringe slope’ band analysis procedures,” J. Phys. B 5(1), 7–15 (1972). [CrossRef]
  7. A. P. Tzannis, J. C. Lee, P. Beaud, H. M. Frey, T. Greber, B. Mischler, P. P. Radi, and K. Boulouchos, “OH Concentration Measurements by Resonant Holographic Interferometry and Comparison with Direct Numerical Simulations,” Flow Turbul. Combus. 64(3), 183–196 (2000). [CrossRef]
  8. M. Crance, P. Juncar, and J. Pinard, “A new method for measuring relative oscillator strengths using a CW dye laser,” J. Phys. B 8(15), 2461 (1975). [CrossRef]
  9. J. J. Moschella, R. C. Hazelton, and M. D. Keitz, “Resonant, heterodyne laser interferometer for state density measurements in atoms and ions,” Rev. Sci. Instrum. 77(9), 093108 (2006). [CrossRef]
  10. R. Gross, R. Chodzko, E. Turner, and J. Coffer, “Measurements of the anomalous dispersion of HF in absorption,” IEEE J. Quantum Electron. 16(7), 795–798 (1980). [CrossRef]
  11. A. B. Duval and A. I. McIntosh, “Measurement of oscillator strength by tunable laser interferometry,” J. Phys. D Appl. Phys. 13(9), 1617–1624 (1980). [CrossRef]
  12. S. Marchetti and R. Simili, “Measurement of the refractive index dispersion around an absorbing line,” Opt. Commun. 249(1-3), 37–41 (2005). [CrossRef]
  13. O. E. Denchev, A. G. Zhiglinskii, N. S. Ryazanov, and A. N. Samokhin, “Possibility of intra-resonator double-beam spectrointerferometry of phase objects using a dye laser,” J. Appl. Spectrosc. 36(3), 267–271 (1982). [CrossRef]
  14. P. Werle, “Spectroscopic trace gas analysis using semiconductor diode lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 52(8), 805–822 (1996). [CrossRef]
  15. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for quantitative trace gas detection,” Opt. Express 16(19), 14689–14702 (2008). [CrossRef] [PubMed]
  16. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002). [CrossRef]
  17. J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm-1,” Appl. Phys. B 85(2-3), 235–241 (2006). [CrossRef]
  18. M. Taslakov, V. Simeonov, M. Froidevaux, and H. van den Bergh, “Open-path ozone detection by quantum-cascade laser,” Appl. Phys. B 82(3), 501–506 (2006). [CrossRef]
  19. H. Ganser, M. Horstjann, C. V. Suschek, P. Hering, and M. Mürtz, “Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique,” Appl. Phys. B 78(3-4), 513–517 (2004). [CrossRef]
  20. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33  m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009). [CrossRef] [PubMed]
  21. G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34(11), 921–934 (2005). [CrossRef] [PubMed]
  22. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simecková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  23. C. D. Rodgers, Inverse methods for atmospheric sounding: theory and practice (World Scientific, 2000).
  24. E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett. 28(1), 16–18 (2003). [CrossRef] [PubMed]
  25. T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” J. Appl. Phys. 93(6), 3158–3160 (2003). [CrossRef]
  26. S. S. L. Chang, Fundamentals handbook of electrical and computer engineering (Wiley, New York, 1982).
  27. M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, and D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers,” J. Opt. Soc. Am. B 20(8), 1761–1768 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited