OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26274–26284

Perturbation method for the Rigorous Coupled Wave Analysis of grating diffraction

Kofi Edee, Jean-Pierre Plumey, Gérard Granet, and Jérome Hazart  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26274-26284 (2010)
http://dx.doi.org/10.1364/OE.18.026274


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The perturbation method is combined with the Rigorous Coupled Wave Analysis (RCWA) to enhance its computational speed. In the original RCWA, a grating is approximated by a stack of lamellar gratings and the number of eigenvalue systems to be solved is equal to the number of subgratings. The perturbation method allows to derive the eigensolutions in many layers from the computed eigensolutions of a reference layer provided that the optical and geometrical parameters of these layers differ only slightly. A trapezoidal grating is considered to evaluate the performance of the method.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 14, 2010
Revised Manuscript: October 26, 2010
Manuscript Accepted: October 26, 2010
Published: December 1, 2010

Citation
Kofi Edee, Jean-Pierre Plumey, Gérard Granet, and Jérome Hazart, "Perturbation method for the Rigorous Coupled Wave Analysis of grating diffraction," Opt. Express 18, 26274-26284 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26274


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielectric waveguides," IEEE Trans. Microw. Theory Tech. MTT-23, 123-133 (1975). [CrossRef]
  2. M. G. Moharam, and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. A 72, 1385-1392 (1982). [CrossRef]
  3. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The dielectric lamellar diffraction grating," Opt. Acta (Lond.) 28, 413-428 (1981).
  4. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The finitely conducting lamellar diffraction grating," Opt. Acta (Lond.) 28, 1087-1102 (1981).
  5. K. Knop, "Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves," J. Opt. Soc. Am. 68, 1206-1210 (1978). [CrossRef]
  6. Ph. Lalanne, and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM-polarization," J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  7. G. Granet, and B. Guizal, "Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization," J. Opt. Soc. Am. A 13, 1019-1023 (1996). [CrossRef]
  8. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  9. L. Li, "Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity," J. Opt. Soc. Am. A 10, 2581-2591 (1993). [CrossRef]
  10. J. Y. Suratteau, M. Cadilhac, and R. Petit, "Sur la détermination numérique des efficacités de certains réseaux diélectriques profonds," J. Opt. (Paris) 14, 273-288 (1983).
  11. D. M. Pai, and K. A. Awada, "Analysis of dielectric gratings of arbitrary profiles and thicknesses," J. Opt. Soc. Am. A 8, 755-762 (1991). [CrossRef]
  12. N. Chateau, and J.-P. Hugonin, "Algorithm for the rigorous coupled-wave analysis of grating diffraction," J. Opt. Soc. Am. A 11, 1321-1331 (1994). [CrossRef]
  13. N. P. van der Aa, and R. M. M. Mattheij, "Computing shape parameter sensitivity of the field of one-dimensional surface-relief gratings by using an analytical approach based on RCWA," J. Opt. Soc. Am. A 24, 2692-2700 (2007). [CrossRef]
  14. E. Popov, M. Nevière, B. Gralak, and G. Tayeb, "Staircase approximation validity for arbitrary-shaped gratings," J. Opt. Soc. Am. A 19, 33-42 (2002). [CrossRef]
  15. J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt. (Paris) 11, 235-241 (1980).
  16. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, "Rigorous and efficient grating-analysis method made easy for optical engineers," Appl. Opt. 38, 304-313 (1999). [CrossRef]
  17. T. Vallius, "Comparing the Fourier modal method with the C method: analysis of conducting multilevel gratings in TM polarization," J. Opt. Soc. Am. A 19, 1555-1562 (2002). [CrossRef]
  18. G. Granet, J. Chandezon, J.-P. Plumey, and K. Raniriharinosy, "Reformulation of the coordinate transformation method through the concept of adaptive spatial resolution. Application to trapezoidal gratings," J. Opt. Soc. Am. A 18, 2102-2108 (2001). [CrossRef]
  19. L. D. Landau, and E. M. Lifschitz, Quantum Mechanics: Non-Relativistic Theory, 3rd ed. Ed. Pergamon, New York, (1977).
  20. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique quantique, T2, Ed. Hermann, Paris, (1994). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited