OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26313–26324

Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform

ZhongPing Lee, Yu-Hwan Ahn, Curtis Mobley, and Robert Arnone  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26313-26324 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using hyperspectral measurements made in the field, we show that the effective sea-surface reflectance ρ (defined as the ratio of the surface-reflected radiance at the specular direction corresponding to the downwelling sky radiance from one direction) varies not only for different measurement scans, but also can differ by a factor of 8 between 400 nm and 800 nm for the same scan. This means that the derived water-leaving radiance (or remote-sensing reflectance) can be highly inaccurate if a spectrally constant ρ value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote-sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.

© 2010 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing

Original Manuscript: September 28, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: November 10, 2010
Published: December 1, 2010

ZhongPing Lee, Yu-Hwan Ahn, Curtis Mobley, and Robert Arnone, "Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform," Opt. Express 18, 26313-26324 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Morel, “In-water and remote measurements of ocean color,” Boundary-Layer Meteorol. 18(2), 177–201 (1980). [CrossRef]
  2. S. B. Hooker, G. Lazin, G. Zibordi, and S. D. McLean, “An Evaluation of Above- and In-Water Methods for Determining Water-Leaving Radiances,” J. Atmos. Ocean. Technol. 19(4), 486–515 (2002). [CrossRef]
  3. G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, and I. Slutsker, “A network for standardized ocean color validation measurements,” Eos Trans. AGU 87(293), 297 (2006). [CrossRef]
  4. G. Zibordi, S. B. Hooker, J. F. Berthon, and D. DʼAlimonte, “Autonomous Above-Water Radiance Measurements from an Offshore Platform: A Field Assessment Experiment,” J. Atmos. Ocean. Technol. 19(5), 808–819 (2002). [CrossRef]
  5. S. B. Hooker, G. Zibordi, J.-F. Berthon, and J. W. Brown, “Above-water radiometry in shallow coastal waters,” Appl. Opt. 43(21), 4254–4268 (2004). [CrossRef] [PubMed]
  6. R. C. Smith, C. R. Booth, and J. L. Star, “Oceanographic biooptical profiling system,” Appl. Opt. 23(16), 2791–2797 (1984). [CrossRef] [PubMed]
  7. D. A. Toole, D. A. Siegel, D. W. Menzies, M. J. Neumann, and R. C. Smith, “Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability,” Appl. Opt. 39(3), 456–469 (2000). [CrossRef]
  8. J. L. Mueller, and R. W. Austin, eds., Ocean Optics Protocols for SeaWiFS Validation, Revision 1, NASA Tech. Memo. 104566 (NASA, Goddard Space Flight Center, Greenbelt, Maryland, 1995), Vol. 25, p. 67.
  9. K. L. Carder and R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30(2), 286–298 (1985). [CrossRef]
  10. J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. L. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurement and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3, NASA/TM-2002–210004, J. L. Mueller and G. S. Fargion, eds. (2002), pp. 171–182.
  11. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data,” IEEE Trans. Geosci. Rem. Sens. 42(2), 401–415 (2004). [CrossRef]
  12. G. Zibordi, J.-F. Berthon, F. Mélin, D. D'Alimonte, and S. Kaitala, “Validation of satellite ocean color primary products at optically complex coastal sites: Northern Adriatic Sea, Northern Baltic Proper and Gulf of Finland,” Remote Sens. Environ. 113(12), 2574–2591 (2009). [CrossRef]
  13. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999). [CrossRef]
  14. R. W. Austin, “Inherent spectral radiance signatures of the ocean surface,” in Ocean Color Analysis, S. W. Duntley, ed. (Scripps Inst. Oceanogr., San Diego, 1974), pp. 1–20.
  15. R. G. Steward, K. L. Carder, and T. G. Peacock, “High resolution in water optical spectrometry using the Submersible Upwelling and Downwelling Spectrometer (SUDS),” presented at the EOS AGU-ASLO, San Diego, CA, February 21–25, 1994.
  16. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: A reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001). [CrossRef]
  17. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981). [CrossRef] [PubMed]
  18. G. Zibordi, B. Holben, I. Slutsker, D. Giles, D. D'Alimonte, F. Melin, J.-F. Berthon, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppala, “AERONET-OC: A network for the validation of ocean color primary products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009). [CrossRef]
  19. Z. P. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Remote-sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements,” presented at the Ocean Optics XIII, 1996.
  20. Z. P. Lee, K. L. Carder, R. Arnone, and M. He, “Determination of primary spectral bands for remote sensing of aquatic environments,” Sensors (Basel Switzerland) 7(12), 3428–3441 (2007).
  21. C. S. Roesler and M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 100(C7), 13279–13294 (1995). [CrossRef]
  22. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38(18), 3831–3843 (1999). [CrossRef]
  23. R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99(C4), 7457–7466 (1994). [CrossRef]
  24. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002). [CrossRef] [PubMed]
  25. E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: Theory and applications,” J. Geophys. Res. 111, C03011 (2006), doi:03010.01029/02005JC002880.
  26. Z. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106(C6), 11639–11651 (2001). [CrossRef]
  27. Y.-H. Ahn, J.-H. Ryu, and J.-E. Moon, “Development of redtide & water turbidity algorithms using ocean color satellite,” KORDI Report No. BSPE 98721–00–1224–01, KORDI, Seoul, Korea (1999).
  28. A Microsoft Excel template of this processing scheme is available for interested practitioners.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited