OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26704–26719

Progress in rare-earth-doped mid-infrared fiber lasers

Angela B Seddon, Zhuoqi Tang, David Furniss, Slawomir Sujecki, and Trevor M Benson  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26704-26719 (2010)
http://dx.doi.org/10.1364/OE.18.026704


View Full Text Article

Enhanced HTML    Acrobat PDF (1449 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The progress, and current challenges, in fabricating rare-earth-doped chalcogenide-glass fibers for developing mid-infrared (IR) fiber lasers are reviewed. For the first time a coherent explanation is forwarded for the failure to date to develop a gallium-lanthanum-sulfide glass mid-IR fiber laser. For the more covalent chalcogenide glasses, the importance of optimizing the glass host and glass processing routes in order to minimize non-radiative decay and to avoid rare earth ion clustering and glass devitrification is discussed. For the first time a new idea is explored to explain an additional method of non-radiative depopulation of the excited state in the mid-IR that has not been properly recognized before: that of impurity multiphonon relaxation. Practical characterization of candidate selenide glasses is presented. Potential applications of mid-infrared fiber lasers are suggested.

© 2010 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Chalcogenide Glass

History
Original Manuscript: September 3, 2010
Revised Manuscript: October 20, 2010
Manuscript Accepted: October 20, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

Citation
Angela B Seddon, Zhuoqi Tang, David Furniss, Slawomir Sujecki, and Trevor M Benson, "Progress in rare-earth-doped mid-infrared fiber lasers," Opt. Express 18, 26704-26719 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26704


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Guo, Y. Wang, C. Peng, H. L. Zhang, G. P. Luo, H. Q. Le, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12(1), 208–219 (2004). [CrossRef] [PubMed]
  2. M. Ebrahim-Zadeh, I. T. Sorokina eds. Mid-infrared coherent sources and applications, NATO Science for Peace and Security, Series B: Physics and Biophysics. (Springer Verlag, The Netherlands, 2008).
  3. R. Reisfeld, and C. K. Jorgensen, Lasers and excited states of rare earths. Inorganic Chemistry Concepts 1. (Springer-Verlag, New York, 1977).
  4. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare earth ions in oxide glasses,” Phys. Rev. B 16(1), 10–20 (1977). [CrossRef]
  5. R. Reisfeld and M. Eyal, “Possible ways of relaxation of excited states of rare earth ions in amorphous media,” J. Phys. C7, 349–355 (1985).
  6. P. W. France ed. Optical fiber lasers and amplifiers (Blackie, London, 1991).
  7. B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999). [CrossRef]
  8. V. Q. Nguyen, J. S. Sanghera, J. A. Freitas, I. D. Aggarwal, and I. K. Lloyd, “Structural investigation of chalcogenide and chalcohalide glasses using Raman spectroscopy,” J. Non-Cryst. Solids 248(2-3), 103–114 (1999). [CrossRef]
  9. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996). [CrossRef]
  10. A. Hrubý, “Evaluation of glass-forming tendency by means of DTA,” Czech. J. Phys. 22(11), 1187–1193 (1972). [CrossRef]
  11. D. Furniss, and A. B. Seddon, “Thermal analysis of inorganic compound glasses and glass-ceramics”, P. Gabbott ed. Principles and applications of thermal analysis (Blackwell, Oxford, 2008).
  12. D. J. Brady and T. Schweizer, “Minimum loss predictions and measurements in gallium lanthanum sulfide based glasses and fibers,” J. Non-Cryst. Solids 242, 92–98 (1998). [CrossRef]
  13. R. Li, D. Furniss, H. Bagshaw, and A. B. Seddon, “The decisive role in oxide content in the formation and crystallization of gallium lanthanum-sulfide glasses,” J. Mater. Res. 14(6), 2621–2627 (1999). [CrossRef]
  14. J. D. Shephard, R. I. Kangley, R. J. Hand, D. Furniss, and A. B. Seddon, “Analysis of oxide content in gallium-lanthanum-sulfide (GLS) glasses by infrared absorption spectroscopy,” Phys. Chem. Glasses 44(4), 267–271 (2003).
  15. D. Furniss and A.B. Seddon, unpublished work.
  16. H. H. Adler and P. F. Kerr, “Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals,” Am. Mineral. 50, 132–147 (1965).
  17. T. Schweizer, “Rare-earth-doped sulfide glasses for mid-infrared fiber lasers”, PhD thesis, ORC, University of Southampton,UK, and Inst. Für Laser Physic, Universität Hamburg, Germany (1998).
  18. V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibers,” Infrared Phys. Technol. 45(2), 115–123 (2004). [CrossRef]
  19. Z. Tang, D. Furniss, T. M. Benson, and A. B. Seddon, “Crystallization behavior of Dy3+-doped selenide glasses”, presented at the Int. Symp. Non-Oxide and New Optical Glasses (ISNOG) 2010 and submitted to J Non-Cryst Solids.
  20. W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995). [CrossRef]
  21. D. S. Ma, P. S. Danielson, and C. T. Moynihan, “Bulk and impurity infrared-absorption in 0.5As2Se3-0.5GeSe2 glass,” J. Non-Cryst. Solids 37(2), 181–190 (1980). [CrossRef]
  22. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256-257, 6–16 (1999). [CrossRef]
  23. C. N. Banwell, Fundamentals of molecular spectroscopy (McGraw-Hill, London, 1966).
  24. R. S. Quimby and B. G. Aitken, “Multiphonon gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320(1-3), 100–112 (2003). [CrossRef]
  25. V. Moizan, V. Nazabal, J. Troles, P. Huoizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGasbS glasses for mid-IR fiber laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31(1), 39–46 (2008). [CrossRef]
  26. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001). [CrossRef]
  27. J. Heo, “Emission and local structure of rare-earth ions in chalcogenide glasses,” J. Non-Cryst. Solids 353(13-15), 1358–1363 (2007). [CrossRef]
  28. S. G. Bishop, D. A. Turnbull, and B. G. Aitken, “Excitation of rare earth emission in chalcogenide glasses by the broadband Urbach edge absorption,” J. Non-Cryst. Solids 266–269, 876–883 (2000). [CrossRef]
  29. H. Harada and K. Tanaka, “Photoluminescence from Pr3+doped chalcogenide glasses excited by bandgap light,” J. Non-Cryst. Solids 246(3), 189–196 (1999). [CrossRef]
  30. B. J. Ainslie, S. P. Craig, R. Wyatt, and K. Moulding, “Optical and structural analysis in neodymium-doped silica based optical fiber,” Mater. Lett. 8(6-7), 204–208 (1989). [CrossRef]
  31. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterisation of nano-scale, Er3+ - doped, ultra-transparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002). [CrossRef]
  32. J. M. Parker, A. B. Seddon, and A. G. Clare, “Crystallization of ZrF4-BaF2-NaF-AlF3-LaF3 glasses,” Phys. Chem. Glasses 28(1), 4–10 (1987).
  33. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium-lanthanum-sulfide glass,” Opt. Express 14(5), 1797–1803 (2006). [CrossRef] [PubMed]
  34. S. Sen and J. F. Stebbins, “Structural role of Nd3+ and Al3+ cations in SiO2 glass: a 29Si MAS-NMR spin-lattice relaxation, 27Al NMR and EPR study,” J. Non-Cryst. Solids 188(1-2), 54–62 (1995). [CrossRef]
  35. B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002). [CrossRef]
  36. T. H. Lee, S. I. Simdyankin, L. Su, and S. R. Elliott, “Evidence for formation of tightly bound rare-earth clusters in chalcogenide glasses and their evolution with glass composition,” Phys. Rev. B 79(18), 180202 (2009). [CrossRef]
  37. D. Ležal, M. Poulain, and J. Zavadil, “Sulfide glasses doped with rare earth elements,” Ceramics-Silikáty 45(3), 105–110 (2001).
  38. A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88(9), 2451–2455 (2005). [CrossRef]
  39. A. B. Seddon, V. K. Tikhomirov, H. Rowe, and D. Furniss, “Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics,” J. Mater. Sci. 18, S145–S151 (2007).
  40. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Milos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low loss transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996). [CrossRef]
  41. E. M. Dianov, V. G. Plotinchenko, Y. N. Pyrkov, I. V. Smol’nikov, S. A. Koleskin, G. G. Devyatykh, M. F. Churbanov, G. E. Snopatin, I. V. Skipachev, and R. M. Shaposhnikov, “Single-mode As-S glass fibers,” Inorg. Mater. 39(6), 627–630 (2003). [CrossRef]
  42. M. F. Churbanov, V. S. Shiryaev, A. I. Suchkov, A. A. Pushkin, V. V. Gerasimenko, R. M. Shaposhnikov, E. M. Dianov, V. G. Plotnichenko, V. V. Koltasev, Y. N. Pyrkov, J. Lucas, and J.-L. Adam, “High purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43(4), 441–447 (2007). [CrossRef]
  43. R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy:chalcogenide glass fiber laser with efficient ouput at 4.5 μm,” IEEE Photon. Technol. Lett. 20(2), 123–125 (2008). [CrossRef]
  44. S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, Opt. Quantum Electron. (submitted to).
  45. F. Prudenzano, L. Mescia, L. A. Alligretti, M. de Sario, T. Palmisano, F. Smektala, V. Moizan, V. Nazabal, and J. Troles, “Desig of ER3+-doped chalcogenide glass laser for MID-IR application,” J. Non-Cryst. Solids 355(18-21), 1145–1148 (2009). [CrossRef]
  46. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962). [CrossRef]
  47. G. S. Ofelt, “Intensity of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962). [CrossRef]
  48. B. Cole, J. Sanghera, B. Shaw, B. Harbison, and I. D. Aggarwal, “Low phonon energy glass and fiber doped with rare earth”, US Patent 6,128,429 (2000).
  49. J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000). [CrossRef]
  50. J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996). [CrossRef]
  51. T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulfide fibers for mid-infrared laser applications,” Opt. Express 1(4), 102–107 (1997). [CrossRef] [PubMed]
  52. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulfide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999). [CrossRef]
  53. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996). [CrossRef] [PubMed]
  54. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission and ion-ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 16(2), 308–316 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited