OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26728–26743

Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges

Nathan Carlie, J. David Musgraves, Bogdan Zdyrko, Igor Luzinov, Juejun Hu, Vivek Singh, Anu Agarwal, Lionel C. Kimerling, Antonio Canciamilla, Francesco Morichetti, Andrea Melloni, and Kathleen Richardson  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26728-26743 (2010)
http://dx.doi.org/10.1364/OE.18.026728


View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, attributes of chalcogenide glass (ChG) based integrated devices are discussed in detail, including origins of optical loss and processing steps used to reduce their contributions to optical component performance. Specifically, efforts to reduce loss and tailor optical characteristics of planar devices utilizing solution-based glass processing and thermal reflow techniques are presented and their results quantified. Post-fabrication trimming techniques based on the intrinsic photosensitivity of the chalcogenide glass are exploited to compensate for fabrication imperfections of ring resonators. Process parameters and implications on enhancement of device fabrication flexibility are presented.

© 2010 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(140.3948) Lasers and laser optics : Microcavity devices
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Chalcogenide Glass

History
Original Manuscript: September 7, 2010
Revised Manuscript: October 26, 2010
Manuscript Accepted: October 28, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

Citation
Nathan Carlie, J. David Musgraves, Bogdan Zdyrko, Igor Luzinov, Juejun Hu, Vivek Singh, Anu Agarwal, Lionel C. Kimerling, Antonio Canciamilla, Francesco Morichetti, Andrea Melloni, and Kathleen Richardson, "Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges," Opt. Express 18, 26728-26743 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26728


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009). [CrossRef]
  2. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass resonators: experiment & analysis,” J. Lightwave Technol. 27(23), 5240–5245 (2009). [CrossRef]
  3. J. Hu, “Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy,” Opt. Express 18(21), 22174–22186 (2010). [CrossRef] [PubMed]
  4. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007). [CrossRef] [PubMed]
  5. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97(1), 64–70 (2006). [CrossRef]
  6. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. Miller, “Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, x-ray photoelectron, and extended x-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005). [CrossRef]
  7. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of Far-Infrared-Transmitting Te Based Glasses Suitable for Carbon Dioxide Detection and Space Optics,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3796–3800 (2007). [CrossRef]
  8. J. Hu, M. Torregiani, F. Morichetti, N. Carlie, A. Agarwal, K. Richardson, L. C. Kimerling, and A. Melloni, “Resonant cavity-enhanced photosensitivity in As2S3 chalcogenide glass at 1550 nm telecommunication wavelength,” Opt. Lett. 35(6), 874–876 (2010). [CrossRef] [PubMed]
  9. J. Hu, X. Sun, A. M. Agarwal, J.-F. Viens, L. C. Kimerling, L. Petit, N. Carlie, K. C. Richardson, T. Anderson, J. Choi, and M. Richardson, “Studies on Structural, Electrical and Optical Properties of Cu-doped As-Se-Te Chalcogenide Glasses,” J. Appl. Phys. 101(6), 063520 (2007). [CrossRef]
  10. E. Mytilineou, “Chalcogenide amorphous semiconductors: chemical modification or doping?” J. Optoelectron. Adv. Mater. 4, 705–710 (2002).
  11. C. Moynihan, P. Macedo, M. Maklad, R. Mohr, and R. Howard, “Intrinsic and Impurity Infrared Absorption in As2Se3 Glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975). [CrossRef]
  12. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994). [CrossRef]
  13. V. Shiryaev, S. Smetanin, D. Ovchinnikov, M. Churbanov, E. Kryukova, and V. Plotnichenko, “Effects of Oxygen and Carbon Impurities on the Optical Transmission of As2Se3 Glass,” Inorg. Mater. 41(3), 308–314 (2005). [CrossRef]
  14. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  15. A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121–128 (1992). [CrossRef]
  16. W. A. King, A. G. Clare, and W. C. LaCourse, “Laboratory preparation of highly pure As2Se3 glass,” J. Non-Cryst. Solids 181(3), 231–237 (1995). [CrossRef]
  17. T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]
  18. H. Liu, Y. Lin, and W. Hsu, “Sidewall roughness control in advanced silicon etch process,” Microsyst. Technol. 10(1), 29–34 (2003). [CrossRef]
  19. M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007). [CrossRef] [PubMed]
  20. D. Sparacin, R. Sun, A. Agarwal, M. Beals, J. Michel, L. C. Kimerling, T. Conway, A. Pomerene, D. Carothers, M. Grove, D. Gill, M. Rasras, S. Patel, and A. White, “Low-Loss Amorphous Silicon Channel Waveguides for Integrated Photonics,” in Proceedings of 3rd IEEE International Conference on Group IV Photonics, pp. 255–257.
  21. J. Hu, V. Singh, A. Agarwal, and L. C. Kimerling, “Separation of scattering and absorption loss contributions in high-index-contrast optical resonators,” manuscript in preparation.
  22. M. Webster, R. Pafchek, G. Sukumaran, and T. Koch, “Low-loss quasi-planar ridge waveguides formed on thin silicon-on-insulator,” Appl. Phys. Lett. 87(23), 231108 (2005). [CrossRef]
  23. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12(21), 5140–5145 (2004). [CrossRef] [PubMed]
  24. D. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, “Plasma etching of As2S3 films for optical waveguides,” J. Non-Cryst. Solids 354(27), 3179–3183 (2008). [CrossRef]
  25. A. Tverjanovich, “Calculation of viscosity of chalcogenide glasses near glass transition temperature from heat capacity or thermal expansion data,” J. Non-Cryst. Solids 298(2-3), 226–231 (2002). [CrossRef]
  26. S. Dutta, H. Jackson, and J. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett. 37(6), 512–514 (1980). [CrossRef]
  27. R. Syms and A. Holmes, “Reflow and Burial of Channel Waveguides Formed in Sol-Gel Glass on Si Substrates,” IEEE Photon. Technol. Lett. 5(9), 1077–1079 (1993). [CrossRef]
  28. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010). [CrossRef] [PubMed]
  29. http://www.amorphousmaterials.com/IR%20Fibers.htm
  30. R. Wang, S. Madden, C. Zha, A. Rode, and B. Luther-Davies, “Annealing induced phase transformation in amorphous As2S3 films,” J. Appl. Phys. 100(6), 063524 (2006). [CrossRef]
  31. We have experimentally observed second phase precipitates and optical loss increase in Ge-Sb-S glass waveguides and resonators reflowed at temperatures above 300 °C.
  32. S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-Coating of Ge23Sb7S70 Chalcogenide Glass Thin Films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009). [CrossRef]
  33. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010). [CrossRef] [PubMed]
  34. A. Atkinson, J. Doorbar, A. Hudd, D. L. Segal, and P. J. White, ““Continuous ink-jet printing using sol-gel “Ceramic” inks,” J. Sol-Gel Sci. Technol. 8(1-3), 1093–1097 (1997). [CrossRef]
  35. H. Nagata, S. W. Ko, E. Hong, C. A. Randall, S. Trolier-McKinstry, P. Pinceloup, D. Skamser, M. Randall, and A. Tajuddin, “Microcontact Printed BaTiO3 and LaNiO3 Thin Films for Capacitors,” J. Am. Ceram. Soc. 89, 2816–2821 (2006).
  36. X. Yu, Z. Wang, and Y. Han, “Microlenses fabricated by discontinuous dewetting and soft lithography,” Microelectron. Eng. 89, 18781881 (2008).
  37. K. Y. Suh, Y. S. Kim, and H. H. Lee, “Capillary Force Lithography,” Adv. Mater. (Deerfield Beach Fla.) 13(18), 1386–1389 (2001). [CrossRef]
  38. A. van Popta, R. Decorby, C. Haugen, T. Robinson, J. McMullin, D. Tonchev, and S. Kasap, “Photoinduced refractive index change in As2Se3 by 633nm illumination,” Opt. Express 10(15), 639–644 (2002). [PubMed]
  39. G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008). [CrossRef] [PubMed]
  40. P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys. Condens. Matter 18(24), 5629–5638 (2006). [CrossRef]
  41. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, and R. Vallée, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29(7), 748–750 (2004). [CrossRef] [PubMed]
  42. O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001). [CrossRef]
  43. S. Song, N. Carlie, L. Petit, K. Richardson, and C. B. Arnold, “Spin-Coated Ge23Sb7S70 Thin Films with Large Photo-Induced Refractive Index Change” Conference on Lasers and Electro-Optics (CLEO): CTuG6 (2010).
  44. J. J. Santiago, M. Sano, M. Hamman, and N. Chen, “Growth and optical characterization of spin-coated As2S3 multilayer thin films,” Thin Solid Films 147(3), 275–284 (1987). [CrossRef]
  45. S. Song, C. F. Gmachl, and C. B. Arnold, “Solvent-casting of Photo-refractive Chalcogenide Glasses and their Application in Quantum Cascade Laser Tuning” Conference on Lasers and Electro-Optics (CLEO): CMGG6 (2007).
  46. A. Zakery and S. R. Elliot, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003). [CrossRef]
  47. K. Tanaka, “Reversible photostructural change: mechanisms, properties and applications,” J. Non-Cryst. Solids 35–36, 1023–1034 (1980). [CrossRef]
  48. T. T. Nang, M. Okuda, and T. Matsushita, “Photo-induced absorption change in some Se-based glass alloy systems,” Phys. Rev. B 19(2), 947–955 (1979). [CrossRef]
  49. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006). [CrossRef] [PubMed]
  50. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and Second-Order Bragg Gratings in Single-Mode Planar Waveguides of Chalcogenide Glasses,” J. Lightwave Technol. 17(5), 837–842 (1999). [CrossRef]
  51. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32(5), 542–544 (2007). [CrossRef] [PubMed]
  52. Y. Yanagase, S. Yamagata, and Y. Kokubun, “Wavelength tunable polymer microring resonator filter with 9.4 nm tuning range,” Electron. Lett. 39(12), 922–924 (2003). [CrossRef]
  53. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008). [CrossRef] [PubMed]
  54. W. De Cort, J. Beeckman, R. James, F. A. Fernández, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34(13), 2054–2056 (2009). [CrossRef] [PubMed]
  55. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006). [CrossRef]
  56. R. T. Brown, “Laser-assisted selective chemical etching for active trimming of GaAs waveguide devices,” IEEE Photon. Technol. Lett. 2(5), 346–348 (1990). [CrossRef]
  57. M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006). [CrossRef] [PubMed]
  58. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007). [CrossRef] [PubMed]
  59. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  60. A. Melloni and M. Martinelli, “Synthesis of Direct-Coupled-Resonators Bandpass Filters for WDM Systems,” J. Lightwave Technol. 20(2), 296–303 (2002). [CrossRef]
  61. T. Sudoh, Y. Nakano, and K. Tada, “Wavelength trimming technology for multiple-wavelength distributed feedback laser array by photo-induced refractive index change,” Electron. Lett. 33(3), 216–217 (1997). [CrossRef]
  62. M. W. Lee, C. Grillet, C. L. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y. H. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15(3), 1277–1285 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (226 KB)      QuickTime
» Media 2: MOV (384 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited