OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26744–26753

Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides

Candice Tsay, Yunlai Zha, and Craig B. Arnold  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26744-26753 (2010)
http://dx.doi.org/10.1364/OE.18.026744


View Full Text Article

Enhanced HTML    Acrobat PDF (1168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chalcogenide glass materials exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these photorefractive materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of two complementary soft lithography methods for patterning and integrating chalcogenide glass waveguides from solution. One method, micro-molding in capillaries (MIMIC), is shown to fabricate multi-mode As2S3 waveguides which are directly integrated with quantum cascade lasers (QCLs). In a second method, we demonstrate the ability of micro-transfer molding (µTM), to produce arrays of single mode rib waveguides (2.5µm wide and 4.5µm high) over areas larger than 6 cm2 while maintaining edge roughness below 5.1 nm. These methods form a suite of processes that can be applied to chalcogenide solutions to create a diverse array of mid-IR optical and photonic structures ranging from <5 to 10’s of µm in dimension.

© 2010 OSA

OCIS Codes
(310.1860) Thin films : Deposition and fabrication
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Chalcogenide Glass

History
Original Manuscript: September 29, 2010
Revised Manuscript: November 30, 2010
Manuscript Accepted: November 30, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

Citation
Candice Tsay, Yunlai Zha, and Craig B. Arnold, "Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides," Opt. Express 18, 26744-26753 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy,” in Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys. 89, I.T. Sorokina and K.L. Vodopyanov, eds. (Springer Verlag, 2003).
  2. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Science 1(1), 74–86 (2010). [CrossRef]
  3. C. Gmachl, F. Capasso, D. L. Sivco, and Q. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001). [CrossRef]
  4. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  5. S.-S. Kim, C. Young, and B. Mizaikoff, “Miniaturized mid-infrared sensor technologies,” Anal. Bioanal. Chem. 390(1), 231–237 (2008). [CrossRef]
  6. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, É. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17(7), 1184–1191 (1999). [CrossRef]
  7. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, “Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films,” J. Opt. Soc. Am. B 20(9), 1844–1852 (2003). [CrossRef]
  8. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005). [CrossRef]
  9. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]
  10. J. Hu, V. Tarasov, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007). [CrossRef] [PubMed]
  11. A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. Zhang, E. M. Brearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Crys. Solids 352, 2515–2520 (2006). [CrossRef]
  12. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008). [CrossRef]
  13. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006). [CrossRef] [PubMed]
  14. X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett. 35(19), 3228–3230 (2010). [CrossRef] [PubMed]
  15. Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28(1), 153–184 (1998). [CrossRef]
  16. E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature 376(6541), 581–584 (1995). [CrossRef]
  17. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express 18(15), 15523–15530 (2010). [CrossRef] [PubMed]
  18. C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J.-E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90, 011110 (2007). [CrossRef]
  19. G. C. Chern and I. Lauks, “Spin-coated amorphous chalcogenide films,” J. Appl. Phys. 53(10), 6979–6982 (1982). [CrossRef]
  20. S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, and C. B. Arnold, “Spin-coating of Ge23Sb7S70 chalcogenide glass thin films,” J. Non-Cryst. Solids 355(45-47), 2272–2278 (2009). [CrossRef]
  21. S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, and C. B. Arnold, “Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings,” Appl. Phys. Lett. 89(4), 041115 (2006). [CrossRef]
  22. K. H. Norian, G. C. Chern, and I. Lauks, “Morphology and thermal properties of solvent-cast arsenic sulfide films,” J. Appl. Phys. 55(10), 3795–3798 (1984). [CrossRef]
  23. S. Song, J. Dua, and C. B. Arnold, “Influence of annealing conditions on the optical and structural properties of spin-coated As2S3 chalcogenide glass thin films,” Opt. Express 18(6), 5472–5480 (2010). [CrossRef] [PubMed]
  24. E. Kim, Y. Xia, and G. M. Whitesides, “Micromolding in capillaries: Applications in materials science,” J. Am. Chem. Soc. 118(24), 5722–5731 (1996). [CrossRef]
  25. X.-M. Zhao, Y. Xia, and G. M. Whitesides, “Fabrication of three-dimensional micro-structures: microtransfer molding,” Adv. Mater. 8(10), 837–840 (1996). [CrossRef]
  26. X.-M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71(8), 1017–1019 (1997). [CrossRef]
  27. J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73(13), 1766–1768 (1998). [CrossRef]
  28. Y. Huang, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Bottom-up soft-lithographic fabrication of three-dimensional multilayer polymer integrated optical microdevices,” Appl. Phys. Lett. 85(15), 3005–3007 (2004). [CrossRef]
  29. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett. 35(20), 3324–3326 (2010). [CrossRef] [PubMed]
  30. A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007). [CrossRef] [PubMed]
  31. N. L. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, “Large-area patterning by vacuum-assisted micromolding,” Adv. Mater. 11(11), 946–950 (1999). [CrossRef]
  32. P. J. Allen, B. R. Johnson, and B. J. Riley, “Photo-oxidation of thermally evaporated As2S3 thin films,” J. Optoelec. Adv. Mater. 7, 1759–1764 (2005).
  33. Y. Yang and Y. Dan, “Preparation of PMMA/SiO2 composite particles via emulsion polymerization,” Colloid Polym. Sci. 281(8), 794–799 (2003). [CrossRef]
  34. G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B 21(3), 1008–1018 (2003). [CrossRef]
  35. J. Hu, N.-N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010). [CrossRef] [PubMed]
  36. T. Barwicz and H. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B 21(6), 2892–2896 (2003). [CrossRef]
  37. B. B. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010). [CrossRef] [PubMed]
  38. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  39. C. Yu, A. Ganjoo, H. Jain, C. G. Pantano, and J. Irudayaraj, “Mid-IR biosensor: detection and fingerprinting of pathogens on gold island functionalized chalcogenide films,” Anal. Chem. 78(8), 2500–2506 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited