OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 26879–26886

Near-field and far-field analysis of an azimuthally polarized slow Bloch mode microlaser

Thanh-Phong Vo, Adel Rahmani, Ali Belarouci, Christian Seassal, Dusan Nedeljkovic, and Ségolène Callard  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 26879-26886 (2010)
http://dx.doi.org/10.1364/OE.18.026879


View Full Text Article

Enhanced HTML    Acrobat PDF (1916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the near- and far-field investigation of the slow Bloch modes associated with the Γ point of the Brillouin zone, for a honeycomb lattice photonic crystal, using near-field scanning optical microscopy (NSOM) and infra-red CCD camera. The array of doughnut-shaped monopolar mode (mode M) inside each unit cell, predicted previously by numerical simulation, is experimentally observed in the near-field by means of a metal-coated NSOM tip. In far-field, we detect the azimuthal polarization of the doughnut laser beam due to destructive and constructive interference of the mode radiating from the surface (mode TEM01*). A divergence of 2° for the laser beam and a mode size of (12.8 ± 1) µm for the slow Bloch mode at the surface of the crystal are also estimated.

© 2010 OSA

OCIS Codes
(250.7270) Optoelectronics : Vertical emitting lasers
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 19, 2010
Revised Manuscript: November 25, 2010
Manuscript Accepted: December 1, 2010
Published: December 4, 2010

Citation
Thanh-Phong Vo, Adel Rahmani, Ali Belarouci, Christian Seassal, Dusan Nedeljkovic, and Ségolène Callard, "Near-field and far-field analysis of an azimuthally polarized slow Bloch mode microlaser," Opt. Express 18, 26879-26886 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-26879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Sakoda, Optical Properties of Photonic Crystals, (Springer- Verlag, Berlin, Heidelberg, 2001).
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: molding the flow of the light, (Princeton University Press, 2008).
  3. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010). [CrossRef]
  4. P. Viktorovitch, B. B. Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. R. Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3-D harnessing of light with 2.5 D photonic Crystals,” Laser Photon. Rev. 4(3), 401–413 (2010). [CrossRef]
  5. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, “Tuning a two-dimensional photonic crystal resonance via optical carrier injection,” Opt. Lett. 30(1), 64–66 (2005). [CrossRef] [PubMed]
  6. B. B. Bakir, Ch. X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 8 (2006).
  7. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Comm. 23(7), 1335–1340 (2005). [CrossRef]
  8. K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electron. Lett. 43(2), 107 (2007). [CrossRef]
  9. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946 (2006). [CrossRef] [PubMed]
  10. S.-H. Kwon and Y.-H. Lee, “High Index-Contrast 2D Photonic Band-Edge Laser,” IEICE Trans. Electron. 87, 308 (2004).
  11. J.-M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999). [CrossRef]
  12. X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003). [CrossRef]
  13. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow Bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express 16(5), 3136–3145 (2008). [CrossRef] [PubMed]
  14. F. Bordas, M. J. Steel, C. Seassal, and A. Rahmani, “Confinement of band-edge modes in a photonic crystal slab,” Opt. Express 15(17), 10890–10902 (2007). [CrossRef] [PubMed]
  15. A. Belarouci, T. Benyattou, X. Letartre, and P. Viktorovitch, “3D light harnessing based on coupling engineering between 1D-2D Photonic Crystal membranes and metallic nano-antenna,” Opt. Express 18(S3), A381–A394 (2010). [CrossRef] [PubMed]
  16. N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005). [CrossRef] [PubMed]
  17. G. Le Gac, A. Rahmani, C. Seassal, E. Picard, E. Hadji, and S. Callard, “Tuning of an active photonic crystal cavity by an hybrid silica/silicon near-field probe,” Opt. Express 17(24), 21672–21679 (2009). [CrossRef] [PubMed]
  18. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP-based two-dimensionnal photonic crystal on silicon: InP-plane Bloch mode laser,” Appl. Phys. Lett. 81(27), 5102 (2002). [CrossRef]
  19. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. R Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane,” J. Appl. Phys. 93(1), 23 (2003). [CrossRef]
  20. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160 (1999). [CrossRef]
  21. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, “Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization,” Appl. Opt. 40(32), 5860–5871 (2001). [CrossRef]
  22. G. Machavariani, Y. Lumer, I. Moshe, and S. Jackel, “Transforming the (0,1)* LG mode with radial polarization to a nearly Gaussian beam by use of a spiral phase element and spatial filter,” Proc. SPIE 6346, 63461W (2006). [CrossRef]
  23. M. Mivelle, I. A. Ibrahim, F. Baida, G. W. Burr, D. Nedeljkovic, D. Charraut, J.-Y. Rauch, R. Salut, and T. Grosjean, “Bowtie nano-aperture as interface between near-fields and a single-mode fiber,” Opt. Express 18(15), 15964–15974 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited