OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27095–27104

Space-based optical image encryption

Wen Chen and Xudong Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27095-27104 (2010)
http://dx.doi.org/10.1364/OE.18.027095


View Full Text Article

Enhanced HTML    Acrobat PDF (1291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

© 2010 OSA

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing
(090.1995) Holography : Digital holography
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Image Processing

History
Original Manuscript: October 20, 2010
Revised Manuscript: December 5, 2010
Manuscript Accepted: December 6, 2010
Published: December 8, 2010

Citation
Wen Chen and Xudong Chen, "Space-based optical image encryption," Opt. Express 18, 27095-27104 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27095


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995). [CrossRef] [PubMed]
  2. B. Javidi, “Securing information with optical technologies,” Phys. Today 50(3), 27–32 (1997). [CrossRef]
  3. O. Matoba, T. Nomura, E. Perez-Cabre, M. Í. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97(6), 1128–1148 (2009). [CrossRef]
  4. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24(11), 762–764 (1999). [CrossRef]
  5. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29(14), 1584–1586 (2004). [CrossRef] [PubMed]
  6. N. Singh and A. Sinha, “Gyrator transform-based optical image encryption, using chaos,” Opt. Lasers Eng. 47(5), 539–546 (2009). [CrossRef]
  7. Z. Liu, H. Chen, T. Liu, P. Li, J. Dai, X. Sun, and S. Liu, “Double-image encryption based on the affine transform and the gyrator transform,” J. Opt. 12(3), 035407 (2010). [CrossRef]
  8. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25(12), 887–889 (2000). [CrossRef]
  9. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform With Applications in Optics and Signal Processing (Wiley, Singapore, 2001).
  10. X. Peng, L. Yu, and L. Cai, “Double-lock for image encryption with virtual optical wavelength,” Opt. Express 10(1), 41–45 (2002). [PubMed]
  11. H. Kim, D. H. Kim, and Y. H. Lee, “Encryption of digital hologram of 3-D object by virtual optics,” Opt. Express 12(20), 4912–4921 (2004). [CrossRef] [PubMed]
  12. M. He, Q. Tan, L. Cao, Q. He, and G. Jin, “Security enhanced optical encryption system by random phase key and permutation key,” Opt. Express 17(25), 22462–22473 (2009). [CrossRef]
  13. Z. Liu, Q. Guo, L. Xu, M. A. Ahmad, and S. Liu, “Double image encryption by using iterative random binary encoding in gyrator domains,” Opt. Express 18(11), 12033–12043 (2010). [CrossRef] [PubMed]
  14. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30(13), 1644–1646 (2005). [CrossRef] [PubMed]
  15. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31(8), 1044–1046 (2006). [CrossRef] [PubMed]
  16. X. Peng, H. Wei, and P. Zhang, “Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain,” Opt. Lett. 31(22), 3261–3263 (2006). [CrossRef] [PubMed]
  17. T. J. Naughton, B. M. Hennelly, and T. Dowling, “Introducing secure modes of operation for optical encryption,” J. Opt. Soc. Am. A 25(10), 2608–2617 (2008). [CrossRef]
  18. X. C. Cheng, L. Z. Cai, Y. R. Wang, X. F. Meng, H. Zhang, X. F. Xu, X. X. Shen, and G. Y. Dong, “Security enhancement of double-random phase encryption by amplitude modulation,” Opt. Lett. 33(14), 1575–1577 (2008). [CrossRef] [PubMed]
  19. P. Kumar, A. Kumar, J. Joseph, and K. Singh, “Impulse attack free double-random-phase encryption scheme with randomized lens-phase functions,” Opt. Lett. 34(3), 331–333 (2009). [CrossRef] [PubMed]
  20. W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35(2), 118–120 (2010). [CrossRef] [PubMed]
  21. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  22. U. Schnars, and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, New York, 2005).
  23. W. Chen, C. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95(20), 201103 (2009). [CrossRef]
  24. W. Chen and X. Chen, “Quantitative phase retrieval of a complex-valued object using variable function orders in the fractional Fourier domain,” Opt. Express 18(13), 13536–13541 (2010). [CrossRef] [PubMed]
  25. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  26. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45(5), 975–983 (2006). [CrossRef] [PubMed]
  27. B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett. 28(4), 269–271 (2003). [CrossRef] [PubMed]
  28. F. J. Dyson and H. Falk, “Period of a discrete cat mapping,” Am. Math. Mon. 99(7), 603–614 (1992). [CrossRef]
  29. W. Chen, C. Quan, and C. J. Tay, “Optical color image encryption based on Arnold transform and interference method,” Opt. Commun. 282(18), 3680–3685 (2009). [CrossRef]
  30. Y. Sheng, Z. Xin, M. S. Alam, L. Xi, and L. Xiao-Feng, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17(5), 3270–3284 (2009). [CrossRef] [PubMed]
  31. X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” J. Opt. A, Pure Appl. Opt. 11(8), 085402 (2009). [CrossRef]
  32. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt. 47(19), D71–D79 (2008). [CrossRef] [PubMed]
  33. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett. 33(14), 1626–1628 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited