OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27226–27237

Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain

Yuto Tanaka, Go Obara, Akira Zenidaka, Nikolay N Nedyalkov, Mitsuhiro Terakawa, and Minoru Obara  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27226-27237 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1613 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe theoretical and experimental results on near-field interaction of two-dimensionally (2D) arrayed, high-permittivity spherical particles on a substrate in the Mie resonance scattering domain for surface nano-patterning processing. When a touching particle pair of Mie resonance particles on the substrate is considered, an electromagnetic mode different from the single particle mode is excited inside the particles, resulting in an intensity enhancement in a gap between two hotspots at particle-substrate contact points. As for 2D hexagonal close-packed particle arrays on the substrate, the refractive index of particle exhibiting a maximal enhancement factor for the 2D particle arrays is found to be shifted from the Mie resonance conditions for the single particle system.

© 2010 OSA

OCIS Codes
(290.4020) Scattering : Mie theory
(350.3390) Other areas of optics : Laser materials processing
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: September 22, 2010
Revised Manuscript: October 31, 2010
Manuscript Accepted: November 1, 2010
Published: December 10, 2010

Yuto Tanaka, Go Obara, Akira Zenidaka, Nikolay N Nedyalkov, Mitsuhiro Terakawa, and Minoru Obara, "Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain," Opt. Express 18, 27226-27237 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, New York, 2001).
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  3. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010). [CrossRef]
  4. S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002). [CrossRef]
  5. P. Leiderer, C. Bartels, J. König-Birk, M. Mosbacher, and J. Boneberg, “Imaging optical near-fields of nanostructures,” Appl. Phys. Lett. 85(22), 5370–5372 (2004). [CrossRef]
  6. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006). [CrossRef]
  7. N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006). [CrossRef]
  8. T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010). [CrossRef]
  9. Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010). [CrossRef]
  10. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972). [CrossRef] [PubMed]
  11. A. Vertikov, M. Kuball, A. V. Nurmikko, and H. J. Maris, “Time-resolved pump-probe experiments with subwavelength lateral resolution,” Appl. Phys. Lett. 69(17), 2465–2467 (1996). [CrossRef]
  12. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  13. S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).
  14. G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908). [CrossRef]
  15. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the Poynting vector field,” Phys. Rev. B 73(23), 235432 (2006). [CrossRef]
  16. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006). [CrossRef]
  17. N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006). [CrossRef]
  18. Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009). [CrossRef]
  19. A. Ghoshal and P. G. Kik, “Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays,” J. Appl. Phys. 103(11), 113111 (2008). [CrossRef]
  20. S. Foteinopoulou, J. P. Vigneron, and C. Vandenbem, “Optical near-field excitations on plasmonic nanoparticle-based structures,” Opt. Express 15(7), 4253–4267 (2007). [CrossRef] [PubMed]
  21. J. J. Xiao, J. P. Huang, and K. W. Yu, “Optical response of strongly coupled metal nanoparticles in dimer arrays,” Phys. Rev. B 71(4), 045404 (2005). [CrossRef]
  22. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15(21), 13682–13688 (2007). [CrossRef] [PubMed]
  23. P. A. Atanasov, N. N. Nedyalkov, T. Sakai, and M. Obara, “Localization of the electromagnetic field in the vicinity of gold nanoparticles: Surface modification of different substrates,” Appl. Surf. Sci. 254(4), 794–798 (2007). [CrossRef]
  24. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403(1-3), 62–67 (2005). [CrossRef]
  25. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006). [CrossRef] [PubMed]
  26. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005). [CrossRef]
  27. N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field distribution in two dimensionally arrayed gold nanoparticles on platinum substrate,” Appl. Phys. Lett. 90(12), 123106 (2007). [CrossRef]
  28. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008). [CrossRef]
  29. N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007). [CrossRef]
  30. S. Hayashi, Y. Takeuchi, S. Hayashi, and M. Fujii, “Quenching-free fluorescence enhancement on nonmetallic particle layers: Rhodamine B on GaP particle layers,” Chem. Phys. Lett. 480(1-3), 100–104 (2009). [CrossRef]
  31. Z. B. Wang, W. Guo, B. Luk'yanchuk, D. J. Whitehead, L. Li, and Z. Liu, “Optical Near-field Interaction between Neighbouring Micro/Nano-Particles,” J. Laser Micro/Nanoeng. 3(1), 14–18 (2008). [CrossRef]
  32. S. M. Huang, Z. A. Wang, Z. Sun, Z. B. Wang, and B. Luk’yanchuk, “Theoretical and experimental investigation of the near field under ordered silica spheres on substrate,” Appl. Phys., A Mater. Sci. Process. 96(2), 459–466 (2009). [CrossRef]
  33. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998).
  34. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  35. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986). [CrossRef] [PubMed]
  36. X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys. 86(1), 408 (1999). [CrossRef]
  37. L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,” Appl. Surf. Sci. 212–213, 255–263 (2003). [CrossRef]
  38. B. Messinger, K. von Raben, R. Chang, and P. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981). [CrossRef]
  39. Y. Tanaka and M. Obara, “Comparison of Resonant Plasmon Polaritons with Mie Scattering for Laser-Induced Near-Field Nanopatterning: Metallic Particle vs Dielectric Particle,” Jpn. J. Appl. Phys. 48(12), 122002 (2009). [CrossRef]
  40. H. Miyazaki and K. Ohtaka, “Near-field images of a monolayer of periodically arrayed dielectric spheres,” Phys. Rev. B 58(11), 6920–6937 (1998). [CrossRef]
  41. K. Ohtaka and Y. Tanabe, “Photonic Bands Using Vector Spherical Waves. II. Reflectivity, Coherence and Local Field,” J. Phys. Soc. Jpn. 65(7), 2276–2284 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited