OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27658–27669

Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy

Rahul P. Trivedi, Taewoo Lee, Kris A. Bertness, and Ivan I. Smalyukh  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27658-27669 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop an integrated system of holographic optical trapping and multimodal nonlinear microscopy and perform simultaneous three-dimensional optical manipulation and non-invasive structural imaging of composite soft-matter systems. We combine different nonlinear microscopy techniques such as coherent anti-Stokes Raman scattering, multi-photon excitation fluorescence and multi-harmonic generation, and use them for visualization of long-range molecular order in soft materials by means of their polarized excitation and detection. The combined system enables us to accomplish manipulation in composite soft materials such as colloidal inclusions in liquid crystals as well as imaging of each separate constituents of the composite material in different nonlinear optical modalities. We also demonstrate optical generation and control of topological defects and simultaneous reconstruction of their three-dimensional long-range molecular orientational patterns from the nonlinear optical images.

© 2010 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.1190) Materials : Anisotropic optical materials
(160.3710) Materials : Liquid crystals
(180.6900) Microscopy : Three-dimensional microscopy
(190.4160) Nonlinear optics : Multiharmonic generation
(190.4180) Nonlinear optics : Multiphoton processes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 29, 2010
Manuscript Accepted: December 8, 2010
Published: December 15, 2010

Rahul P. Trivedi, Taewoo Lee, Kris A. Bertness, and Ivan I. Smalyukh, "Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy," Opt. Express 18, 27658-27669 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford 1993).
  2. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007). [CrossRef] [PubMed]
  3. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nat. Mater. 3(5), 307–310 (2004). [CrossRef] [PubMed]
  4. I. I. Smalyukh, J. Butler, J. D. Shrout, M. R. Parsek, and G. C. L. Wong, “Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 030701 (2008). [CrossRef] [PubMed]
  5. I. I. Smalyukh, O. V. Zribi, J. C. Butler, O. D. Lavrentovich, and G. C. L. Wong, “Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA,” Phys. Rev. Lett. 96(17), 177801 (2006). [CrossRef] [PubMed]
  6. J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals,” Science 302(5653), 2094–2097 (2003). [CrossRef] [PubMed]
  7. P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, “Novel colloidal interactions in anisotropic fluids,” Science 275(5307), 1770–1773 (1997). [CrossRef] [PubMed]
  8. T. C. Lubensky, D. Petty, N. Currier, and H. Stark, “Topological defects and interactions in nematic emulsions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 57(1), 610–625 (1998). [CrossRef]
  9. D. G. Grier, “Optical tweezers in colloid and interface science,” Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997). [CrossRef]
  10. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010). [CrossRef] [PubMed]
  11. M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004). [CrossRef] [PubMed]
  12. I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005). [CrossRef] [PubMed]
  13. C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009). [CrossRef] [PubMed]
  14. M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006). [CrossRef] [PubMed]
  15. I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006). [CrossRef] [PubMed]
  16. D. Engstrom, M. Persson, R. P. Trivedi, K. A. Bertness, M. Goksor, and I. I. Smalyukh, “Three-dimensional long-range order and defect core structures in anisotropic fluids probed by nanorods,” (submitted).
  17. R. P. Trivedi, D. Engstrom, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. (to be published).
  18. Y. Iwashita and H. Tanaka, “Optical manipulation of defects in a lyotropic lamellar phase,” Phys. Rev. Lett. 90(4), 045501 (2003). [CrossRef] [PubMed]
  19. I. I. Smalyukh, A. N. Kuzmin, A. V. Kachynski, P. N. Prasad, and O. D. Lavrentovich, “Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal,” Appl. Phys. Lett. 86(2), 021913 (2005). [CrossRef]
  20. I. I. Smalyukh, D. S. Kaputa, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Optical trapping of director structures and defects in liquid crystals using laser tweezers,” Opt. Express 15(7), 4359–4371 (2007). [CrossRef] [PubMed]
  21. I. I. Smalyukh, B. I. Senyuk, S. V. Shiyanovskii, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Optical trapping, manipulation, and 3D imaging of disclinations in liquid crystals and measurement of their line tension,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 450(1), 79 (2006). [CrossRef]
  22. S. Wurlitzer, C. Lautz, M. Liley, C. Duschl, and T. M. Fischer, “Micromanipulation of Langmuir-Monolayers with Optical Tweezers,” J. Phys. Chem. B 105(1), 182–187 (2001). [CrossRef]
  23. N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering,” Opt. Express 14(6), 2481–2486 (2006). [CrossRef] [PubMed]
  24. E. Brasselet, T. Balcinuas, N. Murazawa, S. Juodkazis, and H. Misawa, “Light-Induced Nonlinear Rotations of Nematic Liquid Crystal Droplets Trapped in Laser Tweezers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512, 143–151 (2009).
  25. H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006). [CrossRef] [PubMed]
  26. H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep. 351(6), 387–474 (2001). [CrossRef]
  27. I. I. Smalyukh, Y. Lansac, N. A. Clark, and R. P. Trivedi, “Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids,” Nat. Mater. 9(2), 139–145 (2010). [CrossRef]
  28. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001). [CrossRef]
  29. I. I. Smalyukh and O. D. Lavrentovich, “Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid crystals studied by fluorescence confocal polarizing microscopy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 051703 (2002). [CrossRef]
  30. I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D. Lavrentovich, H. Huang, E. C. Gartland, V. H. Bodnar, T. Kosa, and B. Taheri, “Electric-field-induced nematic-cholesteric transition and three-dimensional director structures in homeotropic cells,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(6), 061707 (2005). [CrossRef]
  31. S. Anand, R. P. Trivedi, G. Stockdale, and I. I. Smalyukh, “Non-contact optical control of multiple particles and defects using holographic optical trapping with phase-only liquid crystal spatial light modulator,” Proc. SPIE 7232, 723208, 723208-15 (2009). [CrossRef]
  32. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91(15), 151905 (2007). [CrossRef]
  33. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Realignment-enhanced coherent anti-Stokes Raman scattering and three-dimensional imaging in anisotropic fluids,” Opt. Express 16(14), 10617–10632 (2008). [CrossRef] [PubMed]
  34. B. G. Saar, H.-S. Park, X. S. Xie, and O. D. Lavrentovich, “Three-dimensional imaging of chemical bond orientation in liquid crystals by coherent anti- Stokes Raman scattering microscopy,” Opt. Express 15(21), 13585–13596 (2007). [CrossRef] [PubMed]
  35. B.-C. Chen and S.-H. Lim, “Three-dimensional imaging of director field orientations in liquid crystals by polarized four-wave mixing microscopy,” Appl. Phys. Lett. 94(17), 171911 (2009). [CrossRef]
  36. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscopy using excitation beam with controlled polarization pattern to determine three-dimensional molecular orientation,” Jpn. J. Appl. Phys. 44(34), 1066–1068 (2005). [CrossRef]
  37. R. S. Pillai, M. Oh-E, H. Yokoyama, G. J. Brakenhoff, and M. Müller, “Imaging colloidal particle induced topological defects in a nematic liquid crystal using third harmonic generation microscopy,” Opt. Express 14(26), 12976–12983 (2006). [CrossRef] [PubMed]
  38. D. A. Higgins and B. J. Luther, “Watching molecules reorient in liquid crystal droplets with multiphoton-excited fluorescence microscopy,” J. Chem. Phys. 119(7), 3935 (2003). [CrossRef]
  39. T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010). [CrossRef] [PubMed]
  40. The full description of the procedures used in this paper requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by NIST or are recommended by NIST or that they are necessarily the best materials, instruments, or suppliers for the purposes described.
  41. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, “Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy,” J. Cryst. Growth 310(13), 3154–3158 (2008). [CrossRef]
  42. J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, “Steady-state and time-resolved photoluminescence from relaxed and strained GaN nanowires grown by catalyst-free molecular-beam epitaxy,” J. Appl. Phys. 103(12), 124309 (2008). [CrossRef]
  43. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185(1-3), 77–82 (2000). [CrossRef]
  44. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]
  45. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003). [CrossRef] [PubMed]
  46. The notation such as BPF 417/60 denotes a bandpass filter with center wavelength of 417 nm and 60 nm bandwidth.
  47. D. B. Conkey, R. P. Trivedi, S. R. P. Pavani, I. I. Smalyukh, and R. Piestun, “Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions,” Opt. Express , submitted. [PubMed]
  48. K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, “Imaging in optical micromanipulation using two-photon excitation,” N. J. Phys. 6, 136 (2004). [CrossRef]
  49. P. R. T. Jess, V. Garces-Chavez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman micro–spectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38(9), 1082–1088 (2007). [CrossRef]
  50. K. Shi, P. Li, and Z. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007). [CrossRef]
  51. I. I. Smalyukh, R. Pratibha, N. V. Madhusudana, and O. D. Lavrentovich, “Selective imaging of 3D director fields and study of defects in biaxial smectic A liquid crystals,” Eur Phys J E Soft Matter 16(2), 179–191 (2005). [CrossRef] [PubMed]
  52. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004). [CrossRef] [PubMed]
  53. H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298 (2004). [CrossRef]
  54. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  55. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006). [CrossRef] [PubMed]
  56. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010). [CrossRef]
  57. M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283(5399), 209–212 (1999). [CrossRef] [PubMed]
  58. G. K. Voeltz and W. A. Prinz, “Sheets, ribbons and tubules - how organelles get their shape,” Nat. Rev. Mol. Cell Biol. 8(3), 258–264 (2007). [CrossRef] [PubMed]
  59. Y. Shibata, G. K. Voeltz, and T. A. Rapoport, “Rough sheets and smooth tubules,” Cell 126(3), 435–439 (2006). [CrossRef] [PubMed]
  60. X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006). [CrossRef] [PubMed]
  61. Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophys. J. 92(9), 3251–3259 (2007). [CrossRef] [PubMed]
  62. N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science 329(5994), 967–971 (2010). [CrossRef] [PubMed]
  63. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009). [CrossRef] [PubMed]
  64. R. D. Schaller, J. C. Johnson, K. R. Wilson, L. F. Lee, L. H. Haber, and R. J. Saykally, “Nonlinear chemical imaging nanomicroscopy: from second and third harmonic generation to multiplex (broad-bandwidth) sum frequency generation near-field scanning optical microscopy,” J. Phys. Chem. B 106(20), 5143–5154 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited