OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 1872–1878

Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser

Amirkianoosh Kiani, Krishnan Venkatakrishnan, and Bo Tan  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 1872-1878 (2010)
http://dx.doi.org/10.1364/OE.18.001872


View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study we report for the first time a method for direct patterning of silicon oxide on a silicon substrate by irradiation with a femtosecond laser of Mega Hertz pulse frequency under ambient condition. Embossed lines of silicon oxide with around 3~4 μm width and less than 100 nm height were formed by controlling the parameters such as laser pulse power and frequency rate. A Scanning Electron Microscope (SEM), an optical microscopy and a Micro-Raman and Energy Dispersive X-ray (EDX) spectroscopy were used to analyze the silicon oxide layer.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.6810) Lasers and laser optics : Thermal effects
(160.6000) Materials : Semiconductor materials
(320.7090) Ultrafast optics : Ultrafast lasers
(350.5340) Other areas of optics : Photothermal effects

ToC Category:
Laser Microfabrication

History
Original Manuscript: October 15, 2009
Revised Manuscript: December 7, 2009
Manuscript Accepted: December 7, 2009
Published: January 15, 2010

Citation
Amirkianoosh Kiani, Krishnan Venkatakrishnan, and Bo Tan, "Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser," Opt. Express 18, 1872-1878 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-1872


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology (Englewood Cliffs, NJ: Printice-Hall, 2000).
  2. Y. J. Chabal, Fundamental Aspects of Silicon Oxidation, (Springer Ser. Mater. Sci. 46, Berlin, 2001)
  3. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, “Ultrathin (< 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits,” J. Appl. Phys. 90(5), 2057–2121 (2001). [CrossRef]
  4. G. Aygun, E. Atanassova, A. Alacakir, L. Ozyuzer, and R. Turan, “Oxidation of Si surface by a pulsed Nd: YAG laser,” J. Phys. D 37(11), 1569–1575 (2004). [CrossRef]
  5. A. C. R. Grayson, R. S. Shawgo, A. M. Johnson, N. T. Flynn, and L. R. Yawen, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE 92(1), 6–21 (2004). [CrossRef]
  6. G. Saini, R. Gates, M. C. Asplund, S. Blair, S. Attavar, and M. R. Linford, “Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication,” Lab Chip 9(12), 1789–1796 (2009). [CrossRef] [PubMed]
  7. D. S. Lee, S. H. Park, H. S. Yang, K. H. Chung, T. H. Yoon, S. J. Kim, K. Kim, and Y. T. Kim, “Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption,” Lab Chip 4(4), 401–407 (2004). [CrossRef] [PubMed]
  8. D. Bauerle, Laser processing and chemistry (Springer, New York, 3rd ed., 2000).
  9. D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, “Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3(4), 318–323 (2003). [CrossRef]
  10. B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” J. Appl. Phys. A 95(2), 537–545 (2009). [CrossRef]
  11. P. Stanley, K. Venkatakrishnan, and L. E. N. Lim, “Direct writing of photomask by ultrashort laser,” Vac. Sci. Technol. B 21(1), 204–206 (2003). [CrossRef]
  12. K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, “Laser writing techniques for photomask fabrication using a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 74(4), 493–496 (2002). [CrossRef]
  13. Y. Y. Zhang, J. Zhang, G. Luo, X. Zhou, G. Y. Xie, T. Zhu, and Z. F. Liu, “Fabrication of silicon-based multilevel nanostructures via scanning probe oxidation and anisotropic wet etching,” Nanotechnology 16(4), 422–428 (2005). [CrossRef]
  14. K. Ueno, R. Okada, K. Saiki, and A. Koma, “Nano-scale anodic oxidation on a Si(111) surface terminated by bilayer-GaSe,” J. Surf. Sci. 514(1-3), 27–32 (2002). [CrossRef]
  15. F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y.-C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76(3), 360–362 (2000). [CrossRef]
  16. D. A. Weinberger, S. Hong, C. A. Mirkin, B. W. Wessels, and T. B. Higgins, “Combinatorial generation and analysis of nanometer- and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching,” Adv. Mater. 12(21), 1600–1603 (2000). [CrossRef]
  17. J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Tribonanolithography of silicon in aqueous solution based on atomic force microscopy,” Appl. Phys. Lett. 85(10), 1766–1768 (2004). [CrossRef]
  18. J. W. Park, N. Kawasegi, N. Morita, and D. W. Lee, “Mechanical approach to nanomachining of silicon using oxide characteristics based on tribo nanolithography (TNL) in KOH solution,” ASME. J. Manuf. Sci. Eng. 126(4), 801 (2004). [CrossRef]
  19. N. Rouhi, B. Esfandyarpour, S. Mohajerzadeh, P. Hashemi, B. Hekmat-Shoar, and M. D. Robertson, “Low temperature high quality growth of silicon-dioxide using oxygenation of hydrogenation-assisted nano-stractured silicon thin film,” Mater. Res. Soc. Symp. Proc. 989, 95–100 (2007). [CrossRef]
  20. B. E. Deal and A. S. Grove, “General relationship for thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770 (1965). [CrossRef]
  21. J. Blanc, “Revised model for oxidation of Si by oxygen,” Appl. Phys. Lett. 33(5), 424–426 (1978). [CrossRef]
  22. V. K. Samalam, “Theoretical-model for the oxidation of silicon,” Appl. Phys. Lett. 47(7), 736–737 (1985). [CrossRef]
  23. A. Fargeix and G. Ghibaudo, “Role of stress on the parabolic kinetic constant for dry silicon oxidation,” J. Appl. Phys. 56(2), 589–591 (1984). [CrossRef]
  24. H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen-growth-rate enhancement in the thin regime 0.2. physical-mechanism,” J. Electrochem. Soc. 132(11), 2693–2700 (1985). [CrossRef]
  25. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008). [CrossRef] [PubMed]
  26. S. Panchatsharam, B. Tan, and K. Venkatakrishnan, “Femtosecond laser-induced shockwave formation on ablated silicon surface,” J. Appl. Phys. 105(9), 093103 (2009). [CrossRef]
  27. J. Bonse, K. W. Brezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221(1-4), 215–230 (2004). [CrossRef]
  28. A. Y. Vorobyev and C. L. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005). [CrossRef]
  29. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 degrees K,” Phys. Rev. 130(5), 1743–1748 (1963). [CrossRef]
  30. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited