OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2279–2286

Single-photon propagation through dielectric bandgaps

Natalia Borjemscaia, Sergey V. Polyakov, Paul D. Lett, and Alan Migdall  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2279-2286 (2010)
http://dx.doi.org/10.1364/OE.18.002279


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theoretical models of photon traversal through quarter-wave dielectric stack barriers that arise due to Bragg reflection predict the saturation of the propagation time with the barrier length, known as the Hartman effect. This saturation is sensitive to the addition of single dielectric layers, varying significantly from sub-luminal to apparently super-luminal and vice versa. Our research tests the suitability of photonic bandgaps as an optical model for the tunneling process. Of particular importance is our observation of subtle structural changes in dielectric stacks drastically affecting photon traversal times, allowing for apparent sub- and super-luminal effects. We also introduce a simple model to link HOM visibility to wavepacket distortion that allows us to exclude this as a possible cause of the loss of contrast in the barrier penetration process.

© 2010 OSA

OCIS Codes
(240.7040) Optics at surfaces : Tunneling
(260.0260) Physical optics : Physical optics

ToC Category:
Quantum Optics

History
Original Manuscript: October 14, 2009
Revised Manuscript: December 10, 2009
Manuscript Accepted: January 10, 2010
Published: January 21, 2010

Citation
Natalia Borjemscaia, Sergey V. Polyakov, Paul D. Lett, and Alan Migdall, "Single-photon propagation through dielectric bandgaps," Opt. Express 18, 2279-2286 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2279


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. E. Hartman, “Tunneling of a wave packet,” J. Appl. Phys. 33(12), 3427–3433 (1962). [CrossRef]
  2. V. Laude and P. Tournois, “Superluminal asymptotic tunneling times through one-dimensional photonic bandgap in quarter-wave-stack dielectric mirrors,” J. Opt. Soc. Am. B 16(1), 194–198 (1999). [CrossRef]
  3. D. L. Solli, J. J. Morehead, C. F. McCormick, and J. M. Hickman, “Comparative study of the propagation of light in bandgaps of photonic crystals and the tunneling of matter waves,” J. Opt. A 10, 075204 (2008).
  4. W. Yun-ping and Z. Dian-lin, “Reshaping, path uncertainty, and superluminal traveling,” Phys. Rev. A 52(4), 2597–2600 (1995). [CrossRef] [PubMed]
  5. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett. 71(5), 708–711 (1993). [CrossRef] [PubMed]
  6. N. Brunner, V. Scarani, M. Wegmüller, M. Legré, and N. Gisin, “Direct measurement of superluminal group velocity and signal velocity in an optical fiber,” Phys. Rev. Lett. 93(20), 203902 (2004). [CrossRef] [PubMed]
  7. Ch. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, “Tunneling of optical pulses through photonic band gaps,” Phys. Rev. Lett. 73(17), 2308–2311 (1994). [CrossRef] [PubMed]
  8. R. Y. Chiao and A. M. Steinberg, “Quantum optical studies of tunneling and other superluminal phenomena,” Phys. Scr. T76(1), 61–66 (1998). [CrossRef]
  9. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987). [CrossRef] [PubMed]
  10. S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007). [CrossRef] [PubMed]
  11. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68(16), 2421–2424 (1992). [CrossRef] [PubMed]
  12. D. Strekalov, A. B. Matsko, A. Savchenkov, and L. Maleki, “Quantum-correlation metrology with biphotons: where is the limit?” J. Mod. Opt. 52(16), 2233–2243 (2005). [CrossRef]
  13. N.B. Rutter, S.V. Polyakov, P. Lett, A. Migdall, and CLEO/QELS Conference Proceedings (2008).
  14. D. J. Papoular, P. Clade, S. V. Polyakov, C. F. McCormick, A. L. Migdall, and P. D. Lett, “Measuring optical tunneling times using a Hong-Ou-Mandel interferometer,” Opt. Express 16, 16005–16012 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-20-16005 [CrossRef] [PubMed]
  15. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), 4107–4121 (1996). [CrossRef] [PubMed]
  16. N. Malkova, S. V. Polyakov, G. Bryant, and A. Migdall, “Effect of Surface Modes on Photon Propagation through Dielectric Bandgaps”, CLEO/QELS Conference Proceedings (2009).
  17. N. Malkova, G. Bryant, S. Polyakov, and A. Migdall, “Effect of surface modes on photon traversal through stop bands of dielectric stacks,” Phys. Rev. B 80(16), 165127 (2009). [CrossRef]
  18. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University Press, 1995).
  19. N. Borjemscaia, S.V. Polyakov, P. Lett, and A. Migdall, in preparation.
  20. H. G. Winful, “Energy storage in superluminal barrier tunneling: Origins of the Hartman effect,” Opt. Express 10, 1491–1496 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-10-25-1491 [PubMed]
  21. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox,” Phys. Rep. 436(1-2), 1–69 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited