OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2767–2781

Adaptive control of modal properties of optical beams using photothermal effects

Muzammil A. Arain, William Z. Korth, Luke F. Williams, Rodica M. Martin, Guido Mueller, D. B. Tanner, and David H. Reitze  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 2767-2781 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an experimental demonstration of adaptive control of modal properties of optical beams. The control is achieved via heat-induced photothermal actuation of transmissive optical elements. We apply the heat using four electrical heaters in thermal contact with the element. The system is capable of controlling both symmetrical and astigmatic aberrations providing a powerful means for in situ correction and control of thermal aberrations in high power laser systems. We demonstrate a tunable lens with a focusing power varying from minus infinity to −10 m along two axes using SF57 optical glass. Applications of the proposed system include laser material processing, thermal compensation of high laser power radiation, and optical beam steering.

© 2010 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.6810) Instrumentation, measurement, and metrology : Thermal effects

ToC Category:
Adaptive Optics

Original Manuscript: November 11, 2009
Revised Manuscript: January 13, 2010
Manuscript Accepted: January 20, 2010
Published: January 26, 2010

Muzammil A. Arain, William Z. Korth, Luke F. Williams, Rodica M. Martin, Guido Mueller, D. B. Tanner, and David H. Reitze, "Adaptive control of modal properties of optical beams using photothermal effects," Opt. Express 18, 2767-2781 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Foster and L. M. Osterink, “Thermal effects in Nd:YAG Laser,” Appl. Opt. 41, 3656–3663 (1970).
  2. E. Greninger, “Thermally induced wave-front distortions in laser windows,” Appl. Opts., 41, 549–552, (1986). A. E. Siegman, Lasers, University Science books, Sausalito, CA (1984).
  3. P. Hello and J. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. (France) 51, 1267–1282 (1990). [CrossRef]
  4. P. Hello and J. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power CW laser beams,” J. Phys. (France) 51, 2243–2261 (1990). [CrossRef]
  5. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002). [CrossRef]
  6. R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29(22), 2635–2637 (2004). [CrossRef] [PubMed]
  7. M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive beam shaping by controlled thermal lensing in optical elements,” Appl. Opt. 46(12), 2153–2165 (2007). [CrossRef] [PubMed]
  8. R. Schmiedl, “Adaptive optics for CO2 laser material processing, ” in 2nd International Workshop on Adaptive Optics for Industry and Medicine, G. D. Love, ed. (World Scientific Publishing Co Pte Ltd, 2000), pp. 32–36.
  9. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979). [CrossRef]
  10. W. L. IJzerman, S. T. de Zwart, and T. Dekker, “Design of 2D/3D switchable displays,” SID Symposium Digest, 36, 98–101 (2005).
  11. T. L. Kelly, A. F. Naumov, M. Yu. Loktev, and M. A. Rakhmatulin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181(4-6), 295–301 (2000). [CrossRef]
  12. I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Sel. Top. Quantum Electron. 13(2), 155–161 (2007). [CrossRef]
  13. H. Ren and S.-T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11292 . [CrossRef] [PubMed]
  14. T.-Y. Chen, C.-H. Li, J.-L. Wang, C. E. Chiu, and G. J. Su, “A MEMS-based Organic Deformable Mirror with Tunable Focal Length,”2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, July 16 (2007), pp. 103–104.
  15. M. Smith, and P. Willems, Auxiliary Optics Support System Conceptual Design Document, Volume 1 Thermal Compensation System, LIGO-T060083–00-D, http://docuserv.ligo.caltech.edu/docs/public/T/T060083-00/T060083-00.pdf
  16. M. A. Arain, V. Quetschke, L. F. Williams, G. Mueller, D. B. Tanner, and D. H. Reitze, “Elements for Future Gravitational Wave Interferometers,’ Frontiers in Optics, OSA meeting, San Jose, CA, September 2007.
  17. M. A. Arain, V. Quetschke, L. F. Williams, R. Martin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive Optical Elements for Laser Beam Shaping,” US provisional patent, Serial No. 61/086,661, US patent pending.
  18. F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th ed., (John Wiley & Sons, USA, 2002).
  19. A. E. Siegman, “Defining, measuring, and optimizing laser beam quality,” Proc. SPIE 1868, 2 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited