OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 2973–2986

Fast light generation through velocity manipulation in two vertically-stacked ring resonators

C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 2973-2986 (2010)
http://dx.doi.org/10.1364/OE.18.002973


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Speed manipulation of optical pulses is a very attractive research challenge enabling next-generation high-capacity all-optical communication networks. Pulses can be effectively slowed by using different integrated optical structures such as coupled-resonator waveguiding structures or photonic crystal cavities. Fast light generation by means of integrated photonic devices is currently a quite unexplored research field in spite of its crucial importance for all-optical pulse processing. In this paper, we report on the first theoretical demonstration of fast light generation in an ultra-compact double vertical stacked ring resonator coupled to a bus waveguide. Periodic coupling between the two rings leads to splitting and recombining of symmetric and anti-symmetric resonant modes. Re-established degenerate modes can form when a symmetric and an anti-symmetric mode having different resonance order exhibit the same resonance wavelength. Under degenerate mode conditions, wide wavelength ranges where the group velocity is negative or larger than the speed of light in vacuum are generated. The paper proves how this physical effect can be exploited to design fast light resonant devices. Moreover, conditions are also derived to obtain slow light operation regime.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.0190) Nonlinear optics : Nonlinear optics
(230.7020) Optical devices : Traveling-wave devices
(230.4555) Optical devices : Coupled resonators
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: December 7, 2009
Revised Manuscript: January 14, 2010
Manuscript Accepted: January 15, 2010
Published: January 27, 2010

Citation
C. Ciminelli, C. E. Campanella, F. Dell’Olio, and M. N. Armenise, "Fast light generation through velocity manipulation in two vertically-stacked ring resonators," Opt. Express 18, 2973-2986 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2973


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Milonni, Fast light, slow light and left-handed light (Institute of Physics, 2004).
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  3. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef]
  4. S. Rawal, R. K. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17(16), 13315–13325 (2009). [CrossRef] [PubMed]
  5. A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, “Signal velocity, causality, and quantum noise in superluminal light pulse propagation,” Phys. Rev. Lett. 86(18), 3925–3929 (2001). [CrossRef] [PubMed]
  6. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008). [CrossRef]
  7. P. K. Kondratko and S. L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15(16), 9963–9969 (2007). [CrossRef] [PubMed]
  8. H. Su, P. K. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14(11), 4800–4807 (2006). [CrossRef] [PubMed]
  9. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor,” Opt. Express 17(11), 8775–8780 (2009). [CrossRef] [PubMed]
  10. D. R. Solli, C. F. McCormick, R. Y. Chiao, S. Popescu, and J. M. Hickmann, “Fast light, slow light, and phase singularities: a connection to generalized weak values,” Phys. Rev. Lett. 92(4), 043601 (2004). [CrossRef] [PubMed]
  11. P. Chamorro-Posada and F. J. Fraile-Pelaez, “Fast and slow light in zigzag microring resonator chains,” Opt. Lett. 34(5), 626–628 (2009). [CrossRef] [PubMed]
  12. S. Manipatruni, P. Dong, Q. Xu, and M. Lipson, “Tunable superluminal propagation on a silicon microchip,” Opt. Lett. 33(24), 2928–2930 (2008). [CrossRef] [PubMed]
  13. H. N. Yum, M. Salit, G. S. Pati, S. Tseng, P. R. Hemmer, and M. S. Shahriar, “Fast-light in a photorefractive crystal for gravitational wave detection,” Opt. Express 16(25), 20448–20456 (2008). [CrossRef] [PubMed]
  14. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75(5), 053807 (2007). [CrossRef]
  15. M. Z. Feng, W. V. Sorin, and R. S. Tucker, “Fast light and Seed of Information Transfer in the Presence of the detector Noise,” IEEE Photonics J. 1(3), 213–224 (2009). [CrossRef]
  16. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized Design of Integrated Optical Angular Velocity Sensors Based on a Passive Ring Resonator,” J. Lightwave Technol. 27(14), 2658–2666 (2009). [CrossRef]
  17. C. Ciminelli, F. Peluso, and M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2007). [CrossRef]
  18. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  19. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  20. K. J. Vahala, Optical microcavities (World Scientific Publishing, Singapore, 2004).
  21. J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, New York, 2007).
  22. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007). [CrossRef]
  23. H. P. Uranus and H. J. W. M. Hoekstra, “Modeling of Loss-Induced Superluminal and Negative Group Velocity in Two-Port Ring-Resonator Circuits,” J. Lightwave Technol. 25(9), 2376–2384 (2007). [CrossRef]
  24. Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17(2), 933 (2009). [CrossRef] [PubMed]
  25. H. P. Uranus, L. Zhuang, C. G. H. Roeloffzen, and H. J. W. M. Hoekstra, “Pulse advancement and delay in an integrated-optical two-port ring-resonator circuit: direct experimental observations,” Opt. Lett. 32(17), 2620–2622 (2007). [CrossRef] [PubMed]
  26. M. Sumetsky, “Vertically-stacked multi-ring resonator,” Opt. Express 13(17), 6354–6375 (2005). [CrossRef] [PubMed]
  27. P. T. Rakich, M. A. Popović, M. Soljačić, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1(11), 658–665 (2007). [CrossRef]
  28. G. S. Wiederhecker, L. Chen, A. A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  29. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009). [CrossRef]
  30. S. L. Chuang, Physics of Optoelectronic Devices (Wiley-Interscience Publication, New York, 1995).
  31. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited