OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 3045–3058

Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks

Rohit Chatterjee, Mingbin Yu, Aaron Stein, Dim-Lee Kwong, Lionel C. Kimerling, and Chee Wei Wong  »View Author Affiliations

Optics Express, Vol. 18, Issue 3, pp. 3045-3058 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an optical hitless bypass switch based on nanomechanical proximity perturbation for high-bitrate transparent networks. Embedded in a single-level π-imbalanced Mach-Zehnder interferometer, the two nanomechanical-based Δβ-directional couplers permit broadband signal rerouting on-chip, while the selected wavelength remains unaffected at all times for optical filter reconfiguration. The optical hitless switch is implemented in the silicon nanophotonics platform, with experimental measurements matching well with numerical and theoretical modeling.

© 2010 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: December 2, 2009
Revised Manuscript: January 14, 2010
Manuscript Accepted: January 14, 2010
Published: January 28, 2010

Rohit Chatterjee, Mingbin Yu, Aaron Stein, Dim-Lee Kwong, Lionel C. Kimerling, and Chee Wei Wong, "Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks," Opt. Express 18, 3045-3058 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  3. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-Optical Comb Switch for Multiwavelength Message Routing in Silicon Photonic Networks,” IEEE Photon. Technol. Lett. 20(10), 767–769 (2008). [CrossRef]
  4. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-Bandwidth Silicon Photonic Nanowire Waveguides for On-Chip Networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008). [CrossRef]
  5. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]
  6. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips”, Proc. IEEE Special Issue on Silicon Photonics 97, 1166 – 1185 (2009).
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  8. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, John Wiley and Sons, Inc., New York, NY, USA, 1999.
  9. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998). [CrossRef]
  10. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z – 68720Z–12 (2008).
  11. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4×4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008). [CrossRef]
  12. C. R. Doerr, L. W. Stulz, D. S. Levy, R. Pafchek, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Chen, E. Laskowski, G. Bogert, and G. Richards, “Wavelength add-drop node using silica waveguide integration,” J. Lightwave Technol. 22(12), 2755–2762 (2004). [CrossRef]
  13. V. Craciun and O. W. W. Yang, “Ring resonator-based sparse reconfigurable optical add-drop multiplexer. part II: Node level analysis,” Proc. SPIE 5247, 561–568 (2003). [CrossRef]
  14. H. A. Haus, M. A. Popović, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett. 18(10), 1137–1139 (2006). [CrossRef]
  15. M. A. Popović, H. A. Haus, and M. R. Watts, “General approach to hitless switching and FSR extension for resonators in integrated photonic circuits,” in Proc. of Optical Fiber Communication Conference, paper OWI66 (2006).
  16. M. A. Popović, E. P. Ippen, and F. X. Kärtner, “Universally balanced photonic interferometers,” Opt. Lett. 31(18), 2713–2715 (2006). [CrossRef] [PubMed]
  17. M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” in Proc. of Conference on Lasers and Electro-Optics, postdeadline paper CPDA2 (2007).
  18. M. A. Popović, T. Barwicz, M. S. Dahlem, F. Gan, C. W. Holzwarth, P. T. Rakich, M. R. Watts, H. I. Smith, F. X. Kärtner, and E. P. Ippen, “Hitless reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications,” in Proc. of Optical Fiber Communication Conference, paper OTuF4 (2008).
  19. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009). [CrossRef]
  20. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  21. R. E. Scotti, C. Madsen, C. H. Henry, G. Lenz, Y. P. Li, H. Presby, and A. White, “A hitless reconfigurable add-drop multiplexer for WDM networks utilizing planar waveguides, thermo-optic switches and uv-induced gratings,” in Proc. of Optical Fiber Communication Conference, 142 – 143 (1998).
  22. P. T. Rakich, M. A. Popović, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31(9), 1241–1243 (2006). [CrossRef] [PubMed]
  23. M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  24. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  25. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  26. H. Kogelnik and R. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. 12(7), 396–401 (1976). [CrossRef]
  27. M. Papuchon, Y. Combemale, X. Mathieu, D. Ostrowsky, L. Reiber, A. Roy, B. Sejourne, and M. Werner, “Electrically switched optical directional coupler: Cobra,” IEEE J. Quantum Electron. 11(9), 921–922 (1975). [CrossRef]
  28. H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44(7), 3257–3262 (1973). [CrossRef]
  29. H. A. Haus, Waves and Fields in Optoelectronics, (Prentice Hall, 1984).
  30. A. Yariv, “Coupled-wave theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973). [CrossRef]
  31. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003). [CrossRef]
  32. Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett. 10(5), 681–683 (1998). [CrossRef]
  33. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  34. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  35. M.-C. M. Lee and M. C. Wu, “Tunable coupling regimes of silicon microdisk resonators using MEMS actuators,” Opt. Express 14(11), 4703–4712 (2006). [CrossRef] [PubMed]
  36. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waveguide MEMS switches with evanescent coupling mechanism,” J. Microelectromech. Syst. 14(5), 1070–1081 (2005). [CrossRef]
  37. E. Ollier, “Optical MEMS devices based on moving waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(1), 155–162 (2002). [CrossRef]
  38. T. Bakke, C. P. Tigges, J. J. Lean, C. T. Sullivan, and O. B. Spahn, “Planar microoptomechanical waveguide switches,” IEEE J. Sel. Top. Quantum Electron. 8(1), 64–72 (2002). [CrossRef]
  39. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition. Artech House Publishers, 2005.
  40. Y.-I. Lee, K.-H. Park, J. Lee, C.-S. Lee, H.-J. Yoo, C.-J. Kim, and Y.-S. Yoon, “Dry release for surface micromachining with HF vapor-phase etching,” J. Microelectromech. Syst. 6(3), 226–233 (1997). [CrossRef]
  41. M. Offenberg, B. Elsner, and F. Lärmer, “Vapor HF etching for sacrificial oxide removal in surface micromachining,” Electrochemical Society Fall Meet 94, 1056–1057 (1994).
  42. C. R. Helms and B. E. Deal, “Mechanisms of the HF/H2O vapor phase etching of SiO2,” J. Vac. Sci. Technol. 10(4), 806–811 (1992). [CrossRef]
  43. P. J. Holmes and J. E. Snell, “Vapour etching technique for photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited