OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 3 — Feb. 1, 2010
  • pp: 3210–3218

Magnetic response of split ring resonators (SRRs) at visible frequencies

Basudev Lahiri, Scott G. McMeekin, Ali Z. Khokhar, Richard M. De La Rue, and Nigel P. Johnson  »View Author Affiliations


Optics Express, Vol. 18, Issue 3, pp. 3210-3218 (2010)
http://dx.doi.org/10.1364/OE.18.003210


View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we report on a substantial shift in the response of arrays of similarly sized Split Ring Resonators (SRRs), having a rectangular U-shaped form - and made respectively of aluminium and of gold. We also demonstrate that it is possible to obtain the polarization dependent LC peak in the visible spectrum - by using SRRs based on aluminium, rather than gold. The response of metallic SRRs scales linearly with size. At optical frequencies, metals stop behaving like nearly perfect conductors and begin displaying characteristically different behaviour, in accord with the Drude model. The response at higher frequencies, such as those in the visible and near infra-red, depends both on their size and on the individual properties of the metals used. A higher frequency limit has been observed in the polarization dependent response (in particular the LC resonance peak) of gold based SRRs in the near infrared region. By using aluminium based SRRs instead of gold, the higher frequency limit of the LC resonance can be further shifted into the visible spectrum.

© 2010 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(160.3820) Materials : Magneto-optical materials
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(160.6030) Materials : Silica
(240.6490) Optics at surfaces : Spectroscopy, surface
(250.0250) Optoelectronics : Optoelectronics
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: December 17, 2009
Revised Manuscript: January 14, 2010
Manuscript Accepted: January 14, 2010
Published: January 29, 2010

Citation
Basudev Lahiri, Scott G. McMeekin, Ali Z. Khokhar, Richard M. De La Rue, and Nigel P. Johnson, "Magnetic response of split ring resonators (SRRs) at visible frequencies," Opt. Express 18, 3210-3218 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-3210


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. 10(4), 509–514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced Non-Linear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 THz,” Science 306(5700), 1351–1361 (2004). [CrossRef] [PubMed]
  4. V. M. Shalaev, “Optical negative index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  5. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic Metamaterials: Magnetism at Optical Frequencies,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1097–1105 (2006). [CrossRef]
  6. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006). [CrossRef] [PubMed]
  7. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economu, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split ring resonators at Optical frequencies,” Phys. Rev. Lett. 95(22), 1–4 (2005). [CrossRef]
  8. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31(9), 1259–1261 (2006). [CrossRef] [PubMed]
  9. S. Tretyakov, “On geometrical scaling of split-ring and double bar resonators at optical frequencies,” Metamaterials (Amst.) 1(1), 40–43 (2007). [CrossRef]
  10. http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FullWAVE . 2nd December 2009.
  11. W. J. Padilla, A. J. Taylor, C. Highstre, M. Lee, and R. D. Averitt, “Dynamic Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys. Rev. Lett. 96(10), 1–4 (2006). [CrossRef]
  12. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007). [CrossRef] [PubMed]
  13. N. P. Johnson, A. Z. Khokhar, H. M. H. Chong, R. M. De La Rue, and S. McMeekin, “Characterisation at infrared wavelegths of metamaterials formed by thin-film metallic split-ring resonator arrays on silicon,” Electron. Lett. 42(19), 1117–1119 (2006). [CrossRef]
  14. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic Photonic crystals at optical wavelengths,” Phys. Rev. 62, 15299 (2000). [CrossRef]
  15. P. Marcos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(033401), 1–4 (2001).
  16. Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 4–7 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited