OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3519–3530

Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model

Alexander Lorenz, Rolf Schuhmann, and Heinz-Siegfried Kitzerow  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3519-3530 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experimental results obtained by means of a cut-back technique indicate low attenuations (< 1 dB·cm−1) for a solid core photonic crystal fiber filled with the nematic liquid crystal E7. These results observed in the visible wavelength range are compared with electromagnetic field simulations. The latter are carried out with a full vectorial finite element algorithm. Based on the modal properties under the condition of perpendicular anchoring of the liquid crystal molecules, the wavelength dependent attenuation is estimated using a power loss model considering the turbidity of the nematic liquid crystal. The results indicate that the scattering properties of this type of materials make them extremely interesting for fiber optical filters in the visible wavelength range and that filling materials with a relatively high turbidity are in general potentially useful as filling materials for solid core photonic crystal fibers.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(260.1440) Physical optics : Birefringence
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Photonic Crystal Fibers

Original Manuscript: September 28, 2009
Revised Manuscript: November 5, 2009
Manuscript Accepted: November 9, 2009
Published: February 3, 2010

Alexander Lorenz, Rolf Schuhmann, and Heinz-Siegfried Kitzerow, "Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model," Opt. Express 18, 3519-3530 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  2. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, “Photonic bandgap with an index step of one percent,” Opt. Express 13(1), 309–314 (2005). [CrossRef] [PubMed]
  3. G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007). [CrossRef] [PubMed]
  4. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. S. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34(13), 1946–1948 (2009). [CrossRef] [PubMed]
  5. C. Hu and J. R. Whinnery, “Losses Of a Nematic Liquid-Crystal Optical-Waveguide,” J. Opt. Soc. Am. 64(11), 1424–1432 (1974). [CrossRef]
  6. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express 16(23), 19375–19381 (2008). [CrossRef]
  7. H.-S. Kitzerow, A. Lorenz, and H. Matthias, “Tuneable photonic crystals obtained by liquid crystal infiltration,” Phys. Status Solidi 204(11), 3754–3767 (2007) (a). [CrossRef]
  8. G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40(10), 733–748 (2008). [CrossRef]
  9. LMA-10, NKT Photonics A/S, Denmark (formerly Crystal Fiber A/S).
  10. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B 20(8), 1611–1615 (2003). [CrossRef]
  11. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant Reflecting Optical Wave-Guides in SiO2-Si Multilayer Structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  12. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002). [CrossRef]
  13. L. Scolari, S. Gauza, H. Q. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S. T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009). [CrossRef] [PubMed]
  14. G. Tartarini, T. Alkeskjold, L. Scolari, A. Bjarklev, and P. Bassi, “Spectral properties of liquid crystal photonic bandgap fibres with splay-aligned mesogens,” Opt. Quantum Electron. 39(10-11), 913–925 (2007). [CrossRef]
  15. S. V. Burylov, “Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity,” Sov. Phys. JETP 85(5), 873–886 (1997). [CrossRef]
  16. M. Green and S. J. Madden, “Low loss nematic liquid crystal cored fiber waveguides,” Appl. Opt. 28(24), 5202–5203 (1989). [CrossRef] [PubMed]
  17. R. D. Polak, G. P. Crawford, B. C. Kostival, J. W. Doane, and S. Zumer, “Optical determination of the saddle-splay elastic constant K24 in nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), R978–R981 (1994). [CrossRef] [PubMed]
  18. J. Sun, C. C. Chan, and N. Ni, “Analysis of photonic crystal fibers infiltrated with nematic liquid crystal,” Opt. Commun. 278(1), 66–70 (2007). [CrossRef]
  19. S. M. Hsu and H. C. Chang, “Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods,” Opt. Express 16(26), 21355–21368 (2008). [CrossRef] [PubMed]
  20. J. Weirich, J. Laegsgaard, L. Scolari, L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Biased liquid crystal infiltrated photonic bandgap fiber,” Opt. Express 17(6), 4442–4453 (2009). [CrossRef] [PubMed]
  21. COMSOL 3.5a, Comsol Multiphysics®, http://www.comsol.com .
  22. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004). [CrossRef] [PubMed]
  23. G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101(7), 73105 (2007). [CrossRef]
  24. P. G. de Gennes, “Long Range Order and Thermal Fluctuations in Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 7(1), 325–345 (1969). [CrossRef]
  25. D. Langevin and M.A. Bouchiat, “Anisotropy of the turbidity of an oriented nematic liquid crystal,” J. Physique Colloques, C197 (1975).
  26. K. Simonyi, Foundations of Electrical Engineering (Elsevier 1964).
  27. M. A. Khashan and A. Y. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3 μm,” Opt. Commun. 188(1-4), 129–139 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited