OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3893–3904

Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

Eric T. Hoke, Brian E. Hardin, and Michael D. McGehee  »View Author Affiliations

Optics Express, Vol. 18, Issue 4, pp. 3893-3904 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies.

© 2010 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(260.2160) Physical optics : Energy transfer
(350.6050) Other areas of optics : Solar energy
(160.4236) Materials : Nanomaterials

ToC Category:
Solar Energy

Original Manuscript: December 16, 2009
Revised Manuscript: February 3, 2010
Manuscript Accepted: February 6, 2010
Published: February 11, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Eric T. Hoke, Brian E. Hardin, and Michael D. McGehee, "Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells," Opt. Express 18, 3893-3904 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. O'Regan and M. Grätzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991). [CrossRef]
  2. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” JACS 127(48), 16835–16847 (2005). [CrossRef]
  3. B. E. Hardin, E. T. Hoke, P. B. Armstrong, J. H. Yum, P. Comte, T. Torres, J. M. J. Frechet, M. K. Nazeeruddin, M. Grätzel, and M. D. McGehee, “Increased light harvesting in dye-sensitized solar cells with energy relay dyes,” Nat. Photonics 3(7), 406–411 (2009). [CrossRef]
  4. P. R. F. Barnes, A. Y. Anderson, S. E. Koops, J. R. Durrant, and B. C. O'Regan, “Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements,” J. Phys. Chem. C 113(3), 1126–1136 (2009). [CrossRef]
  5. A. Blumen, J. Klafter, and G. Zumofen, “Influence of restricted geometries on the direct energy transfer,” J. Chem. Phys. 84(3), 1397–1401 (1986). [CrossRef]
  6. B. K.-K. Fung and L. Stryer, “Surface density determination in membranes by fluorescence energy transfer,” Biochemistry 17(24), 5241–5248 (1978). [CrossRef] [PubMed]
  7. J. M. Drake, J. Klafter, and P. Levitz, “Chemical and biological microstructures as probed by dynamic processes,” Science 251(5001), 1574–1579 (1991). [CrossRef] [PubMed]
  8. G. Calzaferri and K. Lutkouskaya, “Mimicking the antenna system of green plants,” Photochem. Photobiol. Sci. 7(8), 879–910 (2008). [CrossRef] [PubMed]
  9. C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem. 77(1), 51–76 (2008). [CrossRef] [PubMed]
  10. B. Schuler and W. A. Eaton, “Protein folding studied by single-molecule FRET,” Curr. Opin. Struct. Biol. 18(1), 16–26 (2008). [CrossRef] [PubMed]
  11. J. P. S. Farinha and J. M. G. Martinho, “Resonance Energy Transfer in Polymer Nanodomains,” J. Phys. Chem. C 112(29), 10591–10601 (2008). [CrossRef]
  12. Y. X. Liu, M. A. Summers, C. Edder, J. M. J. Fréchet, and M. D. McGehee, “Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic-Inorganic Hybrid Photovoltaic Cells,” Adv. Mater. 17(24), 2960–2964 (2005). [CrossRef]
  13. R. Koeppe, O. Bossart, G. Calzaferri, and N. S. Sariciftci, “Advanced photon-harvesting concepts for low-energy gap organic solar cells,” Sol. Energy Mater. Sol. Cells 91(11), 986–995 (2007). [CrossRef]
  14. T. Förster, “Zwischenmolekulare Energiewnderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948). [CrossRef]
  15. I. Z. Steinberg and E. Katchalski, “Theoretical Analysis of the Role of Diffusion in Chemical Reactions, Fluorescence Quenching, and Nonradiative Energy Transfer,” J. Chem. Phys. 48(6), 2404–2410 (1968). [CrossRef]
  16. D. D. Thomas, W. F. Carlsen, and L. Stryer, “Fluorescence energy transfer in the rapid-diffusion limit,” Proc. Natl. Acad. Sci. U.S.A. 75(12), 5746–5750 (1978). [CrossRef] [PubMed]
  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  18. J. Baumann and M. D. Fayer, “Excitation transfer in disordered two-dimensional and anisotropic three-dimensional systems: Effects of spatial geometry on time-resolved observables,” J. Chem. Phys. 85(7), 4087–4107 (1986). [CrossRef]
  19. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. Chem. 164(1-3), 3–14 (2004). [CrossRef]
  20. Y. R. Khan, T. E. Dykstra, and G. D. Scholes, “Exploring the Förster limit in a small FRET pair,” Chem. Phys. Lett. 461(4-6), 305–309 (2008). [CrossRef]
  21. J. Najbar and M. Mac, “Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions,” J. Chem. Soc., Faraday Trans. 87(10), 1523–1529 (1991). [CrossRef]
  22. T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronenanregungsenergie,” Z. Naturforsch. B 4a, 321 (1949).
  23. D. Parker, “Luminescent lanthanide sensors for pH, pO2 and selected anions,” Coord. Chem. Rev. 205(1), 109–130 (2000). [CrossRef]
  24. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,” Thin Solid Films 516(14), 4613–4619 (2008). [CrossRef]
  25. L. M. Peter, “Dye-sensitized nanocrystalline solar cells,” Phys. Chem. Chem. Phys. 9(21), 2630–2642 (2007). [CrossRef] [PubMed]
  26. N. Sabbatini, M. Guardigli, J.-M. Lehn, and G. Mathis, “Luminescence of lanthanide cryptates: effects of phosphate and iodide anions,” J. Alloy. Comp. 180(1-2), 363–367 (1992). [CrossRef]
  27. Y. Elkana, J. Feitelson, and E. Katchalski, “Effect of Diffusion on Transfer of Electronic Excitation Energy,” J. Chem. Phys. 48(6), 2399–2404 (1968). [CrossRef]
  28. J.-C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev. 34(12), 1048–1077 (2005). [CrossRef] [PubMed]
  29. J. H. Yum, B. E. Hardin, S. J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel, and M. K. Nazeeruddin, “Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes,” Angew. Chem. Int. Ed. 48(49), 9277–9280 (2009). [CrossRef]
  30. I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Adv. Funct. Mater. 19(15), 2431–2436 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited