OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 4 — Feb. 15, 2010
  • pp: 3952–3966

Transmission enhancement through deep subwavelength apertures using connected split ring resonators

Damla Ates, Atilla Ozgur Cakmak, Evrim Colak, Rongkuo Zhao, C. M. Soukoulis, and Ekmel Ozbay  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3952-3966 (2010)
http://dx.doi.org/10.1364/OE.18.003952


View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of λ/31×λ/12 (width × length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: December 17, 2009
Revised Manuscript: January 31, 2010
Manuscript Accepted: February 2, 2010
Published: February 12, 2010

Citation
Damla Ates, Atilla Ozgur Cakmak, Evrim Colak, Rongkuo Zhao, C. M. Soukoulis, and Ekmel Ozbay, "Transmission enhancement through deep subwavelength apertures using connected split ring resonators," Opt. Express 18, 3952-3966 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-4-3952


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  4. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  5. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006). [CrossRef]
  6. K. G. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005). [CrossRef] [PubMed]
  7. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14(14), 6400–6413 (2006). [CrossRef] [PubMed]
  8. F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14(1), 7–18 (2006). [CrossRef] [PubMed]
  9. F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005). [CrossRef] [PubMed]
  10. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005). [CrossRef] [PubMed]
  11. A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26(7), 450–452 (2001). [CrossRef]
  12. Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005). [CrossRef]
  13. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004). [CrossRef] [PubMed]
  14. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef] [PubMed]
  15. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007). [CrossRef] [PubMed]
  16. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  17. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10(25), 1475–1484 (2002). [PubMed]
  18. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12(12), 2631–2648 (2004). [CrossRef] [PubMed]
  19. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005). [CrossRef] [PubMed]
  20. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004). [CrossRef]
  21. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004). [CrossRef] [PubMed]
  22. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003). [CrossRef]
  23. H. Caglayan, I. Bulu, and E. Ozbay, “Plasmonic structures with extraordinary transmission and highly directional beaming properties,” Microw. Opt. Technol. Lett. 48(12), 2491–2496 (2006). [CrossRef]
  24. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004). [CrossRef]
  25. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. Pure Appl. Opt. 7(2), S159–S164 (2005). [CrossRef]
  26. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003). [CrossRef] [PubMed]
  27. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  28. G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87(19), 191109 (2005). [CrossRef]
  29. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005). [CrossRef]
  30. C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005). [CrossRef]
  31. X. Luo and T. Ishihara, “Sub-100-nm photolithography based on plasmon resonance,” Jpn. J. Appl. Phys. 43(No. 6B), 4017–4021 (2004). [CrossRef]
  32. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005). [CrossRef]
  33. P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005). [CrossRef] [PubMed]
  34. S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004). [CrossRef]
  35. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005). [CrossRef] [PubMed]
  36. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  37. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt. 7(2), S97–S101 (2005). [CrossRef]
  38. N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007). [CrossRef]
  39. A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006). [CrossRef]
  40. R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag. 51(10), 2572–2581 (2003). [CrossRef]
  41. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009). [CrossRef] [PubMed]
  42. A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009). [CrossRef]
  43. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture,” Opt. Express 17(8), 5933–5943 (2009). [CrossRef] [PubMed]
  44. F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. Pure Appl. Opt. 11(11), 114029 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (3350 KB)      QuickTime
» Media 2: MPG (2202 KB)      QuickTime
» Media 3: MPG (3342 KB)      QuickTime
» Media 4: MPG (2008 KB)      QuickTime
» Media 5: MPG (1230 KB)      QuickTime
» Media 6: MPG (1242 KB)      QuickTime
» Media 7: MPG (1235 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited