OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4041–4048

Surface plasmon mediated energy transfer of electrically-pumped excitons

Kwang Hyup An, Max Shtein, and Kevin P. Pipe  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4041-4048 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report strong surface plasmon polariton mediated transfer of energy between molecular excitons across the metallic cathode of an electrically-pumped organic heterostructure. The donor molecular excitons at the organic heterojunction resonantly excite surface plasmon modes on both sides of the optically thick metal electrode, which evanescently couple to dye molecules near the electrode’s exterior surface. Dye fluorescence in the capping layer on the exterior of the device shows a 6.5-fold increase in intensity due to this effect, far exceeding any enhancement attributable to Purcell or optical microcavity effects. Demonstration of this energy transfer mechanism for electrically-pumped excitons suggests new sensing and imaging applications with high signal to noise ratio and new routes for performance improvement in energy harvesting devices, plasmonic devices, and organic LEDs (including white light emission).

© 2010 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons
(260.2160) Physical optics : Energy transfer
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: December 21, 2009
Revised Manuscript: February 9, 2010
Manuscript Accepted: February 9, 2010
Published: February 16, 2010

Kwang Hyup An, Max Shtein, and Kevin P. Pipe, "Surface plasmon mediated energy transfer of electrically-pumped excitons," Opt. Express 18, 4041-4048 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]
  2. L. Cao and M. L. Brongersma, “Active Plasmonics: Ultrafast developments,” Nat. Photonics 3(1), 12–13 (2009). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  4. D. K. Gifford and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81(23), 4315–4317 (2002). [CrossRef]
  5. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  6. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988). [CrossRef]
  7. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  8. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sen. Actuators B 54(1-2), 3–15 (1999). [CrossRef]
  9. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004). [CrossRef] [PubMed]
  10. J. K. Mapel, M. Singh, M. A. Baldo, and K. Celebi, “Plasmonic excitation of organic double heterostructure solar cells,” Appl. Phys. Lett. 90(12), 121102 (2007). [CrossRef]
  11. T. Wakamatsu, K. Saito, Y. Sakakibara, and H. Yokoyama, “Enhanced photocurrent in organic photoelectric cells based on surface-plasmon excitations,” Jpn. J. Appl. Phys. 34(Pt. 2, No. 11A), L1467–L1469 (1995). [CrossRef]
  12. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008). [CrossRef]
  13. C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913–915 (1987). [CrossRef]
  14. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008). [CrossRef]
  15. Q. Huang, K. Walzer, M. Pfeiffer, V. Lyssenko, G. He, and K. Leo, “Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers,” Appl. Phys. Lett. 88(11), 113515 (2006). [CrossRef]
  16. H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290–5296 (2003). [CrossRef]
  17. J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, “Enhancement of surface plasmon-mediated radiative energy transfer through a corrugated metal cathode in organic light-emitting devices,” Appl. Phys. Lett. 93(5), 051106 (2008). [CrossRef]
  18. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B 69(24), 245418 (2004). [CrossRef]
  19. T. D. Heidel, J. K. Mapel, K. Celebi, M. Singh, and M. A. Baldo, “Analysis of surface plasmon polariton mediated energy transfer in organic photovoltaic devices - art. no. 66560I,” Org. Photovoltaics VIII 6656, I6560 (2007).
  20. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978). [CrossRef]
  21. K. Celebi, T. D. Heidel, and M. A. Baldo, “Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions,” Opt. Express 15(4), 1762–1772 (2007). [CrossRef] [PubMed]
  22. L. W. Li, P. S. Kooi, M. S. Leong, and T. S. Yeo, “On the eigenfunction expansion of dyadic Green-function in planarly stratified media,” J. Electromagn. Waves Appl. 8, 663–678 (1994).
  23. Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003). [CrossRef]
  24. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  25. N. Fang, Z. W. Liu, T. J. Yen, and X. Zhang, “Regenerating evanescent waves from a silver superlens,” Opt. Express 11(7), 682–687 (2003). [CrossRef] [PubMed]
  26. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited