OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4118–4129

Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry

Haiyun Xia and Chunxi Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4118-4129 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An ultrafast and Doppler-free optical ranging system based on dispersive frequency-modulated interferometry is demonstrated. The principle is similar to the conventional frequency-modulated continuous-wave interferometry where the range information is derived from the beat frequency between the object signal and the reference signal. However, a passive and static frequency scanning is performed based on the chromatic dispersion of a transform-limited femtosecond pulse in the time domain. We point out that the unbalanced dispersion introduced in the Mach-Zehnder interferometer can be optimized to eliminate the frequency chirp in the temporal interferograms pertaining to the third order dispersion of the all-fiber system, if the dynamic range being considered is small. Some negative factors, such as the polarization instability of the femtosecond pulse, the power fluctuation of the optical signal and the nonuniform gain spectrum of the erbium-doped fiber amplifier lead to an obvious envelope deformation of the temporal interferograms from the Gaussian shape. Thus a new data processing method is proposed to guarantee the range resolution. In the experiment, the vibration of a speaker is measured. A range resolution of 1.59 μm is achieved with an exposure time of 394 fs at a sampling rate of 48.6 MHz.

© 2010 OSA

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(280.3400) Remote sensing and sensors : Laser range finder
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Remote Sensing

Original Manuscript: August 20, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: November 29, 2009
Published: February 17, 2010

Haiyun Xia and Chunxi Zhang, "Ultrafast and Doppler-free femtosecond
optical ranging based on dispersive
frequency-modulated interferometry," Opt. Express 18, 4118-4129 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Payne, D. Parker, and R. F. Bradley, “Range finder with fast multiple range capability,” Rev. Sci. Instrum. 63(6), 3311–3316 (1992). [CrossRef]
  2. R. Dändliker, R. Thalmann, and D. Prongué, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13(5), 339–341 (1988). [CrossRef] [PubMed]
  3. R. Dandliker, K. Hug, J. Politch, and E. Zimmermann, “High-accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34(8), 2407 (1995). [CrossRef]
  4. A. G. Stove, “Linear FMCW radar techniques,” Radar and Signal Processing, IEE Proceedings F 139, 343–350 (1992). [CrossRef]
  5. E. C. Burrows and K.-Y. Liou, “High-resolution laser LIDAR utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electron. Lett. 26(9), 577–579 (1990). [CrossRef]
  6. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19(13), 995–997 (1994). [CrossRef] [PubMed]
  7. J. Calatroni, A. L. Guerrero, C. Sainz, and R. Escalona, “Spectrally resolved white-light interferometry as a profilometry tool,” Opt. Laser Technol. 28(7), 485–489 (1996). [CrossRef]
  8. A. Pf Rtner and J. Schwider, “Dispersion error in white-light linnik interferometers and its implications for evaluation procedures,” Appl. Opt. 40(34), 6223–6228 (2001). [CrossRef]
  9. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000). [CrossRef] [PubMed]
  10. A. Bartels, C. W. Oates, L. Hollberg, and S. A. Diddams, “Stabilization of femtosecond laser frequency combs with subhertz residual linewidths,” Opt. Lett. 29(10), 1081–1083 (2004). [CrossRef] [PubMed]
  11. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006). [CrossRef] [PubMed]
  12. W. C. Swann, J. J. McFerran, I. Coddington, N. R. Newbury, I. Hartl, M. E. Fermann, P. S. Westbrook, J. W. Nicholson, K. S. Feder, C. Langrock, and M. M. Fejer, “Fiber-laser frequency combs with subhertz relative linewidths,” Opt. Lett. 31(20), 3046–3048 (2006). [CrossRef] [PubMed]
  13. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240 m distance in an optical tunnel by using of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000). [CrossRef]
  14. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004). [CrossRef] [PubMed]
  15. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5954 . [CrossRef] [PubMed]
  16. W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett. 31(6), 826–828 (2006). [CrossRef] [PubMed]
  17. H. Xia and C. Zhang, “Ultrafast ranging lidar based on real-time Fourier transformation,” Opt. Lett. 34(14), 2108–2110 (2009). [CrossRef] [PubMed]
  18. N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, and J. G. Fujimoto, “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett. 29(24), 2846–2848 (2004). [CrossRef]
  19. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-11-2404 . [CrossRef] [PubMed]
  20. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-10-6121 . [CrossRef] [PubMed]
  21. H. Yoon and P. Tsiotras, “Spacecraft adaptive attitude and power tracking with variable speed control moment gyroscopes,” J. Guid. Control Dyn. 25(6), 1081–1090 (2002). [CrossRef]
  22. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8(4), 232–234 (1983). [CrossRef] [PubMed]
  23. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000). [CrossRef]
  24. Y. C. Tong, L. Y. Chan, and H. K. Tsang, “fiber dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33(11), 983–985 (1997). [CrossRef]
  25. F. Hakimi and H. Hakimi, “Measurement of optical fiber dispersion and dispersion slope using a pair of short optical pulses and Fourier transform property of dispersive medium,” Opt. Eng. 40(6), 1053–1056 (2001). [CrossRef]
  26. C. Dorrer, “Chromatic dispersion characterization by direct instantaneous frequency measurement,” Opt. Lett. 29(2), 204–206 (2004). [CrossRef] [PubMed]
  27. R. M. Fortenberry, and W. V. Sorin, “Apparatus for characterizing short optical pulses,” U.S. patent 5,684,586 (1997).
  28. N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete characterization of optical pulses by real-time spectral interferometry,” Appl. Opt. 44(36), 7862–7866 (2005). [CrossRef] [PubMed]
  29. T.-J. Ahn, Y. Park, and J. Azaña, “Improved Optical Pulse Characterization Based on Feedback-Controlled Hilbert Transformation Temporal Interferometry,” IEEE Photon. Technol. Lett. 20(7), 475–477 (2008). [CrossRef]
  30. H. Xia and J. Yao, “Characterization of Sub-Picosecond Pulses Based on Temporal Interferometry with Real-Time Tracking of Higher-Order Dispersion and Optical Time Delay,” J. Lightwave Technol. 27(22), 5029–5037 (2009). [CrossRef]
  31. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 1111021–1111023 (2008). [CrossRef]
  32. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]
  33. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11575 . [CrossRef] [PubMed]
  34. Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007), http://www.opticsinfobase.org/abstract.cfm?id=131858 . [CrossRef] [PubMed]
  35. R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman, “Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry,” Opt. Express 15(23), 15464–15479 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-23-15464 . [CrossRef] [PubMed]
  36. K. Goda, D. R. Solli, and B. Jalali, “Real-time optical reflectometry enabled by amplified dispersive Fourier transformation,” Appl. Phys. Lett. 93(3), 0311061–0311063 (2008). [CrossRef]
  37. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009). [CrossRef] [PubMed]
  38. G. P. Agrawal, Nonlinear Fiber Optics, 3nd ed. San Diego, (CA: Academic, 2001).
  39. M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18(5), 678–682 (1979). [CrossRef] [PubMed]
  40. M. Amemiya, “Pulse broadening due to higher order dispersion and its transmission limit,” J. Lightwave Technol. 20(4), 591–597 (2002). [CrossRef]
  41. J. Zhang, X. Zhao, X. Hu, and J. Sun, “Sinewave fit algorithm based on total least-squares method with application to ADC effective bits measurement,” IEEE Trans. Instrum. Meas. 46(4), 1026–1030 (1997). [CrossRef]
  42. J. Capmany, J. Mora, D. Pastor, B. Ortega, and S. Sales, “Microwave Photonic Signal Processing” in Microwave Photonics: Devices and Applications, Stavros Iezekiel, ed. (IEEE press, John Wiley, Chichester, 2009) pp.191–237.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited