OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4478–4490

Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study

P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4478-4490 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wave-optics analysis is performed to investigate the benefits of utilizing Bragg-reflectors and inverted ZnO opals as intermediate reflectors in micromorph cells. The Bragg-reflector and the inverted ZnO opal intermediate reflector increase the current generated in a 100nm thick upper a-Si:H cell within a micromorph cell by as much as 20% and 13%, respectively. The current generated in the bottom μc-Si:H cell within the micromorph is also greater when the Bragg-reflector is used as the intermediate reflector. The Bragg-reflector outperforms the ZnO inverted opal because it has a larger stop-gap, is optically thin, and due to greater absorption losses that occur in the opaline intermediate reflectors.

© 2010 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.0310) Thin films : Thin films
(350.6050) Other areas of optics : Solar energy
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Solar Energy

Original Manuscript: November 12, 2009
Revised Manuscript: February 1, 2010
Manuscript Accepted: February 4, 2010
Published: February 19, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

P. G. O’Brien, A. Chutinan, K. Leong, N. P. Kherani, G. A. Ozin, and S. Zukotynski, "Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study," Opt. Express 18, 4478-4490 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic Microcrystalline Silicon (µc-Si:H)- a promising new thin film solar cell material” in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, New York, 1994), pp. 409–412.
  2. G. L. Martí, “Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996). [CrossRef]
  3. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977). [CrossRef]
  4. A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: A review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995). [CrossRef]
  5. D. Fischer, S. Dubail, J. A. A. Selvan, N. P. Vaucher, R. Platz, and C. Hof, Uu. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, K. D. Ufert, “The “micromorph” solar cell: Extending a-Si:H technology towards thin film crystalline silicon” in Proceedings of the 25th Photovoltaics Specialists Conference (IEEE, New York, 1996), pp. 1053–1056.
  6. P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007). [CrossRef]
  7. J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008). [CrossRef]
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light second edition, (Princeton: Princeton University Press 2008).
  11. G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing modeling,” Opt. Photon. News 14(2), 38–43 (2003). [CrossRef]
  12. D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004). [CrossRef]
  13. L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006). [CrossRef]
  14. P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007). [CrossRef]
  15. P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008). [CrossRef]
  16. M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005). [CrossRef]
  17. H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005). [CrossRef]
  18. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999). [CrossRef]
  19. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008). [CrossRef]
  20. ASTMG, 173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
  21. L. Meng and M. dos Santos, “Characterization of ZnO films prepared by dc reactive magnetron sputtering at different oxygen partial pressures,” Vacuum 46(8-10), 1001–1004 (1995). [CrossRef]
  22. F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  23. P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys. 48(12), 5227–5236 (1977). [CrossRef]
  24. W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion by the effective medium approximation method,” Jpn. J. Appl. Phys. 36(Part 1, No. 3A), 1094–1098 (1997). [CrossRef]
  25. D. Aspnes, J. Theeten, and F. Hottier,, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979). [CrossRef]
  26. A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006). [CrossRef]
  27. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004). [CrossRef]
  28. T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009). [CrossRef] [PubMed]
  29. A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17(10), 8439–8446 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited