OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 5 — Mar. 1, 2010
  • pp: 4557–4563

Polarized infrared emission using frequency selective surfaces

James Ginn, David Shelton, Peter Krenz, Brian Lail, and Glenn Boreman  »View Author Affiliations

Optics Express, Vol. 18, Issue 5, pp. 4557-4563 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An emission frequency selective surface, or eFSS, is made up of a periodic arrangement of resonant antenna structures above a ground plane. By exploiting the coupling and symmetry properties of an eFSS, it is possible to introduce polarization sensitive thermal emission and, subsequently, coherent emission. Two surfaces are considered: a linearly polarized emission surface and a circularly polarized emission surface. The linearly polarized surface consisted of an array of dipole elements and measurements demonstrate these surfaces can be fabricated into high polarization contrast patterns. The circularly polarized surface required the use of an asymmetrical tripole element to maintain coherence between orthogonal current modes and introduce the necessary phase delay to realize circularly polarized radiation.

© 2010 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(160.3918) Materials : Metamaterials
(290.6815) Scattering : Thermal emission

ToC Category:
Optical Devices

Original Manuscript: November 5, 2009
Revised Manuscript: December 21, 2009
Manuscript Accepted: February 10, 2010
Published: February 19, 2010

James Ginn, David Shelton, Peter Krenz, Brian Lail, and Glenn Boreman, "Polarized infrared emission using frequency selective surfaces," Opt. Express 18, 4557-4563 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Lee and Z. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007). [CrossRef]
  2. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002). [CrossRef] [PubMed]
  3. E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-Variant Polarization Manipulation of a Thermal Emission by a SiO2 Subwavelength Grating Supporting Surface Phonon-Polariton,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), paper CTuL6.
  4. J. S. Tharp, J. M. López-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006). [CrossRef] [PubMed]
  5. L. Klein, H. Hamann, Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008). [CrossRef]
  6. S. Ingvarsson, L. Klein, Y. Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007). [CrossRef] [PubMed]
  7. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007). [CrossRef] [PubMed]
  8. B. A. Munk, Frequency Selective Surfaces: Theory and Design, (Wiley, 2000).
  9. H. Ruthanne, E. Swaim, N. Hammer, E. Richards, D. Venkataraman, and M. Barnes, “Robust Circular Polarized Emission from Nanoscopic Single-Molecule Sources: Application to Solid State Devices,” in Organic Electronics — Materials, Devices and Applications, F. So, G.B. Blanchet, Y. Ohmori, eds. (Mater. Res. Soc. Symp. Proc. 965E, Warrendale, PA, 2007), pp. 0965–S12–08.
  10. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008). [CrossRef]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  12. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008). [CrossRef] [PubMed]
  13. I. Pusçasu, W. Schaich, and G. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol. 43(2), 101–107 (2002). [CrossRef]
  14. B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005). [CrossRef]
  15. J. Tharp, D. Shelton, S. Wadsworth, and G. Boreman, “Electron-Beam Lithography of Multiple Layer Sub-micrometer Periodic Arrays on a Barium Fluoride Substrate,” J. Vac. Sci. Technol. B 26, 1821–1823 (2008). [CrossRef]
  16. J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).
  17. Z. Wu, W. Zhang, Z. Liu, and W. Shen, “Circularly polarised reflectarray with linearly polarised feed,” Electron. Lett. 41(7), 387–388 (2005). [CrossRef]
  18. R. Jedlicka, M. Poe, and K. Carver, “Measured mutual coupling between microstrip antennas,” IEEE Trans. Antenn. Propag. 29(1), 147–149 (1981). [CrossRef]
  19. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009). [CrossRef]
  20. J. Vardaxoglou and E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19(18), 709–710 (1983). [CrossRef]
  21. D. Pozar, S. Targonski, and H. Syrigos, “Design of Millimeter Wave Microstrip Reflectarrays,” IEEE Trans. Antenn. Propag. 45(2), 287–296 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited